
Task Allocation in Dependency-aware
Spatial Crowdsourcing

Wangze Ni †, Peng Cheng ∗, Lei Chen †, Xuemin Lin #

†The Hong Kong University of Science and Technology, Hong Kong, China
wangze.ni@connect.ust.hk, leichen@cse.ust.hk

∗East China Normal University, Shanghai, China
pcheng@sei.ecnu.edu.cn

#The University of New South Wales, Australia
lxue@cse.unsw.edu.au

Abstract—Ubiquitous smart devices and high-quality wireless
networks enable people to participate in spatial crowdsourcing
tasks easily, which require workers to physically move to specific
locations to conduct their assigned tasks. Spatial crowdsourcing
has attracted much attention from both academia and industry.
In this paper, we consider a spatial crowdsourcing scenario,
where the tasks may have some dependencies among them.
Specifically, one task can only be dispatched when its dependent
tasks have already been assigned. In fact, task dependencies
are quite common in many real-life applications, such as house
repairing and holding sports games. We formally define the
dependency-aware spatial crowdsourcing (DA-SC), which focuses
on finding an optimal worker-and-task assignment under the
constraints of dependencies, skills of workers, moving distances
and deadlines to maximize the successfully assigned tasks. We
prove that the DA-SC problem is NP-hard and thus intractable.
Therefore, we propose two approximation algorithms, including
a greedy approach and a game-theoretic approach, which can
guarantee the approximate bounds of the results in each batch
process. Through extensive experiments on both real and syn-
thetic data sets, we demonstrate the efficiency and effectiveness
of our DA-SC approaches.

I. INTRODUCTION

Recently, with the popularity of smart devices and high-
speed wireless networks, a new kind of crowdsourcing sys-
tems, namely spatial crowdsourcing [1], become ubiquitous
(e.g., Uber [2], and Waze [3]), and attract attention from both
academia and industry. Specifically, in spatial crowdsourcing
systems, workers are requested to physically move to particular
locations to conduct their assigned tasks. The spatial tasks can
be simple tasks that every normal worker can conduct, such
as taking photos of a landmark (e.g., street view of Google
Maps [4]), and delivering foods (e.g., Uber Eats [5]). However,
some complex tasks require specific skills to finish, such as
wall painting, cleaning home and refereeing a sports game.

Previous studies [6], [7], [8] in multi-skill/complex tasks
oriented spatial crowdsourcing focus on assigning a set of
multi-skilled workers to a given complex task such that the
required skills of the task can be fully covered by the union
of the skill sets of the assigned workers. However, in practice,
each complex task can be a combination of multiple subtasks
and there are dependencies between the subtasks. For instance,
when we want to hold an orienteering race, we have to arrange

a set of checkpoints following a specific order. Since the clue
of the next checkpoint should be put in the last checkpoint, the
tasks of setting each checkpoint should be conducted following
the order. Another example is that when we want to hold a
sports game, like a basketball game, we have to hire many
workers in different roles. For a basketball game, to make
the game fairer and avoid the argument, we need to hire
referees. According to the official basketball game regulation
[10], we first need to hire a crew chief. After we hire a crew
chief, we can go to hire two associate referees. Also, we need
to hire a scorer, a timekeeper, and a 24-second shot clock
operator. Before hiring these officials, we should firstly hire
a chairperson. After hiring a scorer, we can hire an assistant
scorer. If the previous solutions [6], [7], [8] are used directly,
the dependency between the subtasks will cause the efficiency
of the assignment to become very low (i.e., some assigned
workers need to wait until the dependencies of their subtasks
are satisfied).

Furthermore, the workers are free to come and leave and the
tasks dynamically appear in spatial crowdsourcing platforms.
If a requester creates the subtasks one-by-one satisfying their
dependencies, he/she needs to keep on monitoring the pro-
gresses of the subtasks and submits proper subtasks to the
platform once their dependent subtasks are all accomplished,
which is not efficient with respect to time and requires
a lot of effort from the requesters in the highly dynamic
spatial crowdsourcing scenarios. Thus, a dependency-aware
spatial crowdsourcing platform is needed to efficiently as-
sign multi-skill workers to dependency-aware tasks such that
they can be optimally conducted. In this paper, we consider
an important problem in the spatial crowdsourcing system,
namely dependency-aware spatial crowdsourcing (DA-SC),
which assigns workers to those dependency-aware tasks, with
the constraints of skills, dependencies, moving distance, and
deadlines of spatial tasks.

In the sequel, we will illustrate the DA-SC problem through
a motivation example.

Example 1. In the example, a spatial crowdsourcing platform
has three workers (r1 − r3) and five tasks (t1 − t5) as shown
in Figure 1(a), where the dash arrow lines pointing from a

(a) Initial locations (b) Allocation by Greedy (c) Optimal Allocation
Fig. 1: Motivation Example.

TABLE I: Tasks’ Detail.
Task Location Required Skill Dependency
t1 (4, 1) ψ1 ∅
t2 (2, 2) ψ2 {t1}
t3 (5, 2) ψ3 {t1, t2}
t4 (3, 4) ψ4 ∅
t5 (1, 2) ψ3 {t4}

TABLE II: Workers’ Detail.
Worker Location Skill Set
w1 (2, 1) {ψ1, ψ2}
w2 (3, 3) {ψ4}
w3 (5, 3) {ψ1, ψ2, ψ3}

task to its dependent tasks. The details about workers and
tasks are shown in Table I and Table II. For simplicity, in this
example we set all workers and tasks appear on the platform
at the same time. In addition, the maximum moving distance
of each worker is large enough and the moving speed of each
worker is fast enough to reach the assigned tasks before their
deadlines. The goal of the platform is to maximize the total
number of finished tasks, whose assigned workers have the
required skill, and dependencies have been satisfied.

If the platform greedily assigns the nearest skill-satisfied
workers to the tasks but does not consider the dependencies,
the allocation is shown by the red arrows in Figure 1(b). Note
that, since t1, which is t2’s dependency, has not been finished,
the assignment (w1, t2) is invalid. Similarly, the assignment
(w3, t3) is also invalid. Then, only one task can be finished.

However, if the platform takes dependencies into account,
the allocation is shown by the red arrows in Figure 1(c). Each
worker is assigned to one task and the dependencies of each
assigned task are satisfied. Thus, the total number of finished
tasks is 3.

Motivated by the example above, in this paper, we formalize
the DA-SC problem, which focuses on efficiently assigning
proper workers to dependency-aware spatial tasks, under the
constraints of dependencies, skills, moving distances and dead-
lines, and the total number of the assigned worker-and-task
pairs is maximized.

However, to achieve an optimal dependency-aware assign-
ment result is not easy in DA-SC, where the tasks and workers
are highly dynamic and their constraints are required to be all
satisfied. Moreover, the dependencies between tasks make the
problem more complex, since one task can only be conducted
when its dependent tasks are all accomplished and finishing
one critical task may lead to its subsequent tasks become ready
to be conducted. Previous works in multi-skill oriented spatial
crowdsourcing [6], [7], [8] do not consider the dependency of

the tasks and assign a set of workers to fully support a complex
task (consisting of a set of dependency-aware single-worker
tasks) requiring a certain skill set, which is not efficient as
some workers need to wait until the dependencies of their tasks
are satisfied. Thus, no existing methods can be used to solve
dependency-aware spatial crowdsourcing problem efficiently.

In this paper, we first prove that DA-SC problem is NP-hard
by reducing it from the maximum 4-dimensional matching
(Max4DM) [9]. Thus, the DA-SC problem is intractable and
hard to achieve the optimal result. We tackle the DA-SC
problem with two approximation algorithms, namely game-
theoretic approach and greedy approach, which can efficiently
acquire near-optimal results with proven approximation ratios
for each batch process under the constraints of skills, depen-
dencies, distance, and deadlines.

To summarize, our main contributions are listed as follows:
• We formally define the dependency-aware spatial crowd-

sourcing (DA-SC) problem and prove it is NP-hard in
Section II.

• We propose two batch-based approximation algorithms,
greedy and game-theoretic approaches, in Section III and
Section IV respectively. Both of the approaches have guar-
anteed approximate bounds for the final assignment results.

• We conduct extensive experiments on real as well as syn-
thetic data sets and show the efficiency and effectiveness of
our proposed approaches in Section V.
For the rest of the paper, we discuss the related work in

Section VI and conclude in Section VII.

II. PROBLEM DEFINITION

In this section, we present the formal definition of the
dependency-aware spatial crowdsourcing (DA-SC) problem.

A. Heterogeneous Workers

We first define the heterogeneous workers in spatial crowd-
sourcing applications. Assume that Ψ = {ψ1, ψ2, · · · , ψr} is
a universe of r abilities/skills.

Definition 1. (Heterogeneous Workers) A worker, denoted by
w = 〈lw, sw, ww, vw, dw,WSw〉, appears on the platform with
an initial location iw at timestamp sw and waits at most ww
time for assigning a task. In addition, the worker w moves
with velocity vw and has a maximum moving distance dw.
Moreover, each worker w has a set of skills WSw ⊆ Ψ.

In Definition 1, the heterogeneous worker w locates at a
spatial place lw at timestamp sw and will wait ww time
for an assignment. In other words, the worker w no longer
provides services on the platform after the timestamp sw+ww.

Moreover, each worker w is associated with a set of skills
WSw and can move dynamically in any direction with the
velocity vw. For simplicity, in this paper, we use Euclidean dis-
tance as our distance function, which is denoted as dist(x, y)
for the distance between locations x and y. Note that, our
proposed approaches can also be used with other distance
functions (e.g., road-network distance) to solve the DA-SC
task assignment problem.

B. Dependency-aware Spatial Tasks

Next, we define dependency-aware tasks in the spatial
crowdsourcing system, which are constrained by task loca-
tions, deadlines, skill requirements, and dependencies.

Definition 2. (Dependency-aware Spatial Tasks) Let t =
〈lt, st, wt, rst, Dt〉 denote a task. It appears on the platform
with a spatial location lt at timestamp st and needs to be
served within wt time. In addition, the task can be accom-
plished only by a worker who has skill rst. Moreover, the
task is dependent on a set of tasks Dt.

A task requester creates a dependency-aware spatial task
t, which requires a worker with skill rst physically moving
to a specific location lt and starting the service before the
expiration time st+wt. When the requesters propose the tasks,
meanwhile, they can designate the dependency relationships
between the tasks. For any task t, it can be conducted only
after its immediate precedent tasks Dt are completed. Without
loss of generality, the graph of the dependency relationships
of tasks is acyclic, which means no tasks are dependent on its
subsequent tasks.

C. The Dependency-aware Spatial Crowdsourcing Problem

We formally define the dependency-aware spatial crowd-
sourcing (DA-SC) problem as follows.

Definition 3. (Dependency-aware Spatial Crowdsourcing
Problem) Given a set of workers W and a set of tasks T ,
the DA-SC problem is to obtain an assignment M among W
and T to maximize the number of assigned worker-and-task
pairs

Sum(M) = |M | =
∑

w∈W,t∈T
I(w, t) (1)

where I(w, t) = 1 if the pair (w, t) is matched in the
assignment M , and otherwise I(w, t) = 0, such that the
following constraints are satisfied:

1) Skill constraint. In order to accomplish the task t, the
worker w must have the required skill tst.

2) Deadline constraint. For any worker-task pair (w, t),
it should satisfy the following two deadline conditions.
(1) The task should appear before the worker leaves the
platform, (i.e., st ≤ sw +ww). (2) The worker should be
able to arrive at the location of the assigned task before
the deadline of the task (i.e., wt − max{sw − st, 0} −
ctw(lw, lt) ≥ 0, here ctw(lw, lt) is the travel cost from
lw to lt).

3) Exclusive constraint. One dependency-aware task can be
assigned to at most one worker (i.e.,

∑
w∈W I(w, t) ≤ 1)

TABLE III: Symbols and Descriptions.
Symbol Description
Ψ The universe of r abilities/skills Ψr

W The set of n workers w
WSw The set of worker w’s skills
vw The worker w’s velocity
dw The worker w’s maximum moving distance
T The set of m tasks t
tst The task t’s required skill
Dt The set of task t’s dependent tasks
lw(lt) The location of a worker(task)
sw(st) The start timestamp of a worker(task)
ww(wt) The waiting time of a worker(task)
ctw(x, y) The time cost of the worker w’s moving from x to y

and any worker can be assigned to only one task at each
time.

4) Dependency constraint. The worker w can conduct
the task t if and only if the task t’s dependent tasks
had been assigned. (i.e.,

∏
t′∈Dt at′ = 1, where at′ =∑

w∈W I(w, t′)).

D. Hardness of DA-SC Problem
In this subsection, we prove that our DA-SC problem is

NP-hard, by reducing a well-known NP-hard problem, the
maximum 4-dimensional matching (Max4DM) [9], to our
DA-SC problem.

Theorem II.1. (Hardness of the DA-SC problem) The DA-SC
problem is NP-hard.

Proof. We prove the theorem by a reduction from the maxi-
mum 4-dimensional matching (Max4DM) [9], which can be
described as follows:

Given a hyper-graph H = (V 1, V 2, V 3, V 4, E), where V 1,
V 2, V 3, and V 4 are four disjoint sets. In addition, each hyper-
edge contains exactly one vertex from each set, namely, E ⊆
V 1 × V 2 × V 3 × V 4. The Max4DM problem is to find a
matching of maximal size in H .

For a given Max4DM problem, we can transform it to
an instance of DA-SC problem. In this instance, each task’s
dependency size is at most 1. Let the set of tasks which do not
rely on another task be V 2. The set of workers who can do
the tasks in V 2 be V 1. Let the set of tasks which rely on one
task in V 2 be T and the set of |V 2 extra nodes be EP . Let the
union set of T and EP be V 3. Let the set of workers who can
do the tasks in T be W and the set of |EP | extra nodes. T
and V 1 are disjoint sets. Thus, the quaternion 〈v1, v2, v3, v4〉
means that the worker v1 is valid to task v2, the worker v4 is
valid to task v3 and v3 is dependent on the task v2.

Thus, to maximize the number of assigned worker-and-task
pairs in the DA-SC instance is the same as to maximize
the number of matching in Max4DM instance. Given this
mapping, it is easy to show that the Max4DM instance can
be solved if and only if the transformed DA-SC problem can
be solved. This way, we can reduce the Max4DM problem
to the DA-SC problem. Since the Max4DM is known to be
NP-hard [9], DA-SC is also NP-hard, which completes our
proof.

Note that, even when we do not consider the dependency
between tasks, the DA-SC problem is still NP-hard due to
other constraints as shown in the existing work [10].

Thus, due to the NP-hardness of the DA-SC problem, in the
subsequent sections, we propose two approximate algorithms,
namely greedy and game-theoretic approaches, to efficiently
solve DA-SC with proven approximation ratios for each batch
process. Specifically, the spatial crowdsourcing platforms as-
sign workers to tasks batch-by-batch for every constant time
interval (e.g., 5 seconds). In each batch process, the server
applies our approximate algorithms to assign workers to tasks
under the constraints of dependencies, skills, moving distances
and deadlines such that the number of finished tasks is
maximized in the current batch process. Table III summarizes
the commonly used symbols.

III. GREEDY APPROACH

In this section, we proposed a greedy-based algorithm,
namely DASC Greedy approach, to quickly achieve bounded
results. We combine each task and its dependent tasks as an
associative task set and iteratively assign the biggest associa-
tive task set to workers.

A. Associative Task Set

We denote task ti and its dependent tasks as one asso-
ciative task set tci (i.e., tci = {ti} ∪ Di). For instance, in
Example 1 task t4 and its dependent task t5 group into an
associative task set {t4, t5}. In DASC Greedy, every time
we will assign a set of workers to an associative task set
tci such that the tasks in tci can be fully finished by the
assigned workers. Note that after assigning one associative
task set tci, we will update other related associative task
sets which contain any tasks in tci. In particular, we will
remove these tasks in tci from these related associative task
sets. For instance, in Example 1 there are five associative task
sets {{t1}, {t1, t2}, {t1, t2, t3}, {t4}, {t4, t5}}. If we select the
associative task set {t1} to work firstly, the rest associative task
sets will be updated to {t2}, {t2, t3}, {t4}, {t4, t5}}.

B. DASC Greedy Algorithm

Algorithm 1 shows the pseudo-code of our DASC Greedy
Algorithm, where we greedily select the associative task set
with the largest size in each iteration.

Initially, we generate associative task sets TCb (line 1).
Then, in each iteration, we select one associative task set which
can be accomplished by active workers and has the largest size
(line 2-10). Specifically, for each associative task set tc in TCb,
we try to find a set of workers tw who can accomplish tc by
the Hungarian Algorithm[11] (line 5). Then, if the worker set
tw can be found, add 〈tw, tc〉 into the candidate set C (line6-
7). After that, we move the assignment whose associative task
set has the largest size from the candidate set C to Mb (line
8). Next, we update the associative task sets in TCb and the
worker set Wb (line 9).

C. Theoretic Analyses

We first discuss the running time of DASC Greedy.

Lemma III.1. The time complexity of DASC Greedy is
O(min{nb,mb} ·mb).

Algorithm 1: DASC Greedy Algorithm
Input: A set Wb of nb workers and a set Tb of mb tasks in

the batch b
Output: An assignment Mb in the batch b

1 generate the associative task sets TCb;
2 repeat
3 C = ∅;
4 foreach associative task set tc ∈ TCb do
5 run the Hungarian Algorithm[11] to find a set of

workers tw who can accomplish the associative
task set tc;

6 if tw 6= ∅ then
7 add the assignment 〈tw, tc〉 into C;
8 end
9 end

10 move the the assignment 〈tw, tc〉 whose associative
task set tc has the largest size from C to Mb;

11 update TCb and Wb;
12 until no more associative task set can be assigned
13 return Mb

Proof. The loop will be ended until there is no associative
task set can be assigned. Thus, the number of iterations (lines
2-10) can be bounded by O(min{nb,mb}). In each iteration,
there are O(mb) associative task sets should be scanned (line
4). Since the number of candidate workers of each associative
task set and the number of tasks in each associative task set are
both negligible compared with mb and nb, the time complexity
of DASC Greedy is O(min{nb,mb} ·mb).

This lemma shows that DASC Greedy can get the results
within polynomial time. Next, we discuss how good the results
are. Firstly, we prove that the objective function of the DA-SC
problem in Equation 1 is monotone and submodular.

Theorem III.1. Sum(M) is monotone and submodular.

Proof. Let |tc| be the size of the associative task set tc.
Then, the objective function (as shown in Equation 1) can be
rewritten to Sum(M) =

∑
w∈W,t∈T

I(w, t) =
∑
tc∈M

|tc|. Since

|tc| is always positive, Sum(M) is monotone.
To proving its submodularity, we have:

∀〈twi, tci〉 /∈M, ∀〈twj , tcj〉 /∈M,

Sum(M̂)− Sum(M̃) ≤ Sum(M)− Sum(M) (2)

where M̂ = M ∪ {〈twi, tci〉, 〈twj , tcj〉}, M̃ = M ∪
{〈twi, tci〉} and M = M ∪{〈twj , tcj〉}. Here tw is the set of
workers to conduct the associative task set tc.

There are two cases:
• 〈twi, tci〉 is assigned in M̂ and M , but the size of tcj in M̂

is larger than that in M . When we update the associative
task sets TC after assigning the associative task set tci, we
will remove the tasks in tci from the related associative task
sets of tci. The size of the associative task set tcj will not
increase after assigning another associative task set.

• The worker set Ŵb is a subset of the worker set Wb, where
Ŵb (Wb) is the active worker set after (before) finishing
the associative task set tci (i.e., Ŵb ⊆ Wb). If tcj can be
finished by the workers in Wb but cannot be finished by
the workers in Ŵb, tcj will not be assigned in M̂ . Then,
Sum(M̂)− Sum(M̃) = 0, but Sum(M)− Sum(M) = |tcj |.

Thus, Equation 2 has been proven. In conclusion, Sum(M)
is monotone and submodular.

Since Sum(M) is monotone and submodular, according to
[12], we have the below theorem. For the details, please refer
to Appendix A of our technical report [13].

Theorem III.2. The matching size returned by DASC Greedy
Algorithm is at least (1− 1

e) · |Mopt|.

IV. GAME THEORETIC APPROACH

In this section, we develop a game theoretic based frame-
work, namely DASC Game, to further improve the results
achieved by DASC Greedy. Specifically, we model the DA-
SC problem as a strategic game, where each worker corre-
sponds to a player: his goal is to find the task that maximizes
his own utility. We first introduce the general knowledge of
game theory and show that the strategic game can reach an
equilibrium (i.e., a local optimal result where no worker has
the incentive to deviate from his/her assigned task). Then, we
propose a game-theoretic approach with theory analyses on its
converge speed and quality of results.

A. Game Theory

Algorithm 2 illustrates a common framework for study-
ing the dynamic process of decision-making in a strategic
game [14]. In strategic games, players compete with each
other over the same resources to optimize their individual
objective functions. Under this framework, each player always
tries to choose a strategy that maximizes his own utility
without taking the effect of his choice on the other players’
objectives into consideration. The input of the framework is
a strategic game, which can be formally represented by a
tuple 〈W, {Sw}w∈W , {Uw : ×w∈WSw}w∈W → R〉 where Sq
represents all the possible tasks that worker w can take during
the game to optimize his function Uw. The optimization of
Uw depends on w’s own strategy, as well as the strategies
of the other workers. In [15], Nash points that a strategic
game has a pure Nash equilibrium, if there exists a specific
choice of strategies sw ∈ Sw such that the following con-
dition is true for all w ∈ W : Uw(s1, · · · , sw, · · · , s|W |) ≤
Uw(s1, · · · , s′w, · · · , s|W |),∀s′w ∈ Sw. In other words, no
player has the incentive to deviate from his current strategy.

To express the objective functions of all the workers, [16]
proposed a single function Φ : ×w∈WSw → R, called
the potential function in potential games, which constitute
a special class of strategic games. Let sw denote the set
of strategies followed by all workers except w (i.e., sw =
{s1, · · · , sw−1, sw+1, · · · , s|W |}). A potential game is exact
if there exists a potential function Φ, such that for all sw and
all possible combinations of si ∈ ×j∈N\{i}Sj , the following
condition holds:

Uw(sw, sw)− Uw(s′w, sw) = Φ(sw, sw)− Φ(s′w, sw)
[16] proves that for potential games, the best-response frame-
work as shown in Algorithm 2 always converges to a pure
Nash equilibrium. Therefore, we can use the best-response
framework of Algorithm 2 to obtain the solution for DA-SC

Algorithm 2: Best Response Framework
Input: Strategic game

〈V, {Sv}v∈V , {Cv : ×u∈V Su}v∈V → R〉
Output: Nash equilibrium

1 Assign a random strategy to each player
2 repeat
3 foreach player v ∈ V do
4 compute v’s best strategy wrt the other players’

strategies
5 let v follow his best strategy
6 end
7 until Nash equilibrium//no player has changed his strategy
8 return the strategy of each player

problem. Specifically, we propose a game-theoretic algorithm,
namely DASC Game, and analyze its converge speed and
result’s quality.

B. Game-Theoretic Algorithm

We model the DA-SC problem as a game, which is
represented by a tuple 〈Wb, Sww∈Wb

, {Uw : ×w∈Wb
Sw →

R}w∈Wb
〉, where Wb is the worker set in the batch b. Wb

contains the workers who appear in the previous batches but
still wait for assignments and the new workers who just come
in this batch. Similarly, Tb denotes the task set in batch b.
Specifically, each worker w ∈ Wb has a set of strategies
Sw ∈ Tb. Let sw ∈ Sw be a specific strategy of worker w,
which represents the task in this batch that the worker w can
do, and nwsw is the number of workers who also try to do the
task sw. Given sw and the strategies sw of the other players,
the total utility Uw(sw, sw) of w is the summation of (i) the
shared utility of task sw, and (ii) the contribution to the tasks
which are dependent on sw. The goal of each worker w ∈W
is to find the task sw that maximizes his own total utility as
expressed by Equation 3:

Uw(sw, sw) =


(α−1)·

∏
f∈Dsw

af

α·nwsw
+

∑
sw∈Dt

∏
f∈Dt∪{t} af
α·|Dt|·nwsw

, Dsw 6= ∅

1
nwsw

+
∑

sw∈Dt

∏
f∈Dt∪{t} af
α·|Dt|·nwsw

, Dsw = ∅

(3)

where α is the normalization parameter. Because of the
dependency constraint, each task’s utility can be obtained iff
its dependent tasks are assigned, i.e.,

∏
f∈Dt af = 1. Since

each task’s utility is affected by the assignment of itself and
the assignments of its dependent tasks, we divide the utility of
each task t into two parts. The first part, namely Utility Self,
is the utility of the assignment of itself, whose value is α−1

α ,
and the second part, Utility Dependency, is the utility of the
assignments of its dependent tasks, whose value is α−1

α . In
addition, the task t has |Dt| dependent tasks, thus, we divide
the Utility Dependency into |Dt| shares and add each share
to each dependent task. In other words, each task’s utility
is formed by two parts, the first part is the left utility of
itself and the extra utilities from the tasks whose dependency
sets contain this task. In addition, since each task may be
assigned to multiple workers in the Best Response procedure,
we divide the utility of the task t into nwt shares where
nwt is the number of workers who try to do the same task
t, and each worker who tries to do this task has one share

Algorithm 3: DASC Game Algorithm
Input: A set Wb of nb workers and a set Tb of mb tasks in

the batch b
Output: An assignment Mb in the batch b

1 foreach each worker w ∈W do
2 assign w with a random task t ∈ Sw;
3 end
4 repeat
5 foreach worker w ∈W do
6 maxUtility = −∞;
7 foreach task t ∈ Sw do
8 compute worker w’s individual utility function

Uw(sw, sw);
9 if Uw(sw, sw) > maxUtility then

10 maxUtility = Uw(sw, sw);
11 sw = t;
12 end
13 end
14 end
15 until Nash equilibrium
16 According to the Nash equilibrium, get the assignment set

I;
17 return Mb

of the utility. Hence, in Equation 3, the first term is the
shared Utility Self and the second term is the sum of the
shared Utility Dependency from the tasks whose dependency
sets contain this task sw. For a worker w conducting task
t, Utility Self represents his/her own utility on conducting
task t and Utility Dependency indicates the potential future
utility of conducting the tasks depending on task t. Thus,
for a reasonable worker w, maximizing his/her total utility
Uw(sw, s̄w) is his/her rational choice.

Significantly, we have the observation that the objective
function of DA-SC problem in Equation 1 is equal to the
summation of all individual worker’s utility (i.e., Sum(M) =∑
w∈W Uw(sw, sw)). This decomposition of the DA-SC ob-

jective into the summation of individual utility functions
provides a natural motivation for modeling DA-SC as a game.
In addition, we define the potential function Φ(S) as follows:

Φ(S) =−
∑
w∈Wb

∑
t∈∪Sw
∧t 6=sw

∏
f∈Dt∪{t}

af

(nwt + 1) · (nb − nwt)

=−
∑
w∈Wb

∑
t∈∪Sw
∧t 6=sw

(α− 1) ·
∏
f∈Dt∪{t}

af

α · (nwt + 1) · (nb − nwt)

−
∑
w∈Wb

∑
t∈∪Sw
∧t 6=sw

∑
t∈Dl

∏
f∈Dl∪{l}

af

α · (nwt + 1) · |Dl| · (nb − nwt)

−
∑
w∈Wb

∑
t∈∪Sw∧

t 6=sw∧Dt=∅

∏
f∈Dt∪{t}

af

α · (nwt + 1) · (nb − nwt)

We divide the utility of task t by (nwt + 1) · (nb − nwt)
shares and the utility of task t can be obtained iff t is assigned
and its dependent tasks are assigned, i.e.,

∏
f∈Dt∪{t} af = 1.

In addition, for each worker w ∈Wb, we calculate the sum of
one utility share of each task t in the strategy universe ∪Sw
except the task that the worker w selects to conduct, i.e., sw.
Then, we define the potential function Φ(S) as the negative of
the sum of these value. Recall that, each task’s value can be
separated into two parts, thus, we can represent the potential

function Φ(S) by three terms. The first term is the sum of the
shared Utility Self, the second term is the sum of the shared
Utility Dependency and the third term is the sum of the left
Utility Self for the tasks whose dependency sets are empty.

Algorithm 3 shows the pseudo-code of our DASC Game
Algorithm. Initially, DASC Game assigns each worker with
a random task t from worker’s possible task set Sw (line
1 – 2). Then, it starts the best-response procedure (lines 3
– 11). Specifically, in each iteration for each worker w, it
computes the utility of assigning worker w with each possible
tasks, then assigns the task associated with the maximum
utility to the worker w. The iteration terminates when no
worker changes his/her assigned task during a round. Then,
according to the selected task of each worker, we can get the
assignment set Mb (line 12). Note that, we finally remove
the assignments of that the tasks whose dependencies are not
fully satisfied. And for the task which more than one worker
want to do, we randomly select one worker to the task. In
addition, the performance of DASC Game can be improved
by some simple heuristics. Specifically, in Line 2, instead of
a random initialization, we can run the DASC Greedy for the
initialization. We examine the effect of this heuristic in the
experimental evaluation (Section V).

C. Theoretic Analyses

We first prove that DA-SC game is an exact potential game.

Theorem IV.1. DA-SC problem constitutes an exact potential
game.

Proof. As shown in Section IV-A, it suffices to have that for
every worker w, who changes his strategy from the current
one sw to his/her best-response s′w, and for all possible
combinations of the other players’ strategies sw it holds that:

Uw(sw, sw)− Uw(s′w, sw) = Φ(sw, sw)− Φ(s′w, sw)

Suppose nwsw and nws′w are the numbers of workers who
are assigned to the tasks sw and s′w in the assignment (sw, sw),
respectively. Similarly, nwsw and nws′w are the numbers of
workers who are assigned to the tasks sw and s′w in the as-
signment (s′w, sw), respectively. Note that, nwsw = nwsw + 1
and nws′w = nws′w + 1. Indeed, when Dsw 6= ∅ and Ds′w

6= ∅,
we have:

Φ(sw, sw)− Φ(s
′
w, sw)

=−
((α− 1) ·

∏
f∈D

s′w
af

α · (nws′w + 1)
+

∑
s′w∈Dl

∏
f∈Dl∪{l}

af

α · (nws′w + 1) · |Dl|

)

+
((α− 1) ·

∏
f∈Dsw

af

α · (nwsw + 1)
+

∑
sw∈Dl

∏
f∈Dl∪{l}

af

α · (nwsw + 1) · |Dsw |

)

=
((α− 1) ·

∏
f∈Dsw

af

α · nwsw
+

∑
sw∈Dl

∏
f∈Dl∪{l}

af

α · nwsw · |Dsw |

)

−
((α− 1) ·

∏
f∈D

s′w
af

α · nws′w
+

∑
s′w∈Dl

∏
f∈Dl∪{l}

af

α · nws′w · |Ds′w |

)
=Uw(sw, sw)− Uw(s

′
w, sw)

Similarly, when (1) Dsw = ∅ and Ds′w
6= ∅; (2) Dsw 6= ∅

and Ds′w
= ∅; (3) Dsw = ∅ and Ds′w

= ∅, we can have
the same result: Φ(sw, sw) − Φ(s′w, sw) = Uw(sw, sw) −

Uw(s′w, sw). Due to the space limitation, we do not show the
details here. For the full proof, please refer to Appendix B of
our technical report [13].

Then, we proved DA-SC is an exact potential game.
Since DA-SC problem is an exact potential game, and the

set of strategic configurations S is finite, a Nash equilibrium
can be reached after workers changing their strategies a finite
number of times. For simplicity, we prove the upper bound
for the number of rounds required to reach the convergence
of DASC Game Algorithm by a scaled version of the problem
where the objective function takes integer values. Specifi-
cally, we assume an equivalent game with potential function
ΦZ(S) = d · Φ(S), where d is a constant which depends on
the nwsw such that ΦZ(S) ∈ Z,∀S. Obviously, this does not
scale with the size of the problem. Then, we can prove the
following lemma.

Lemma IV.1. The number of rounds required by DASC Game
Algorithm in each batch converges to an equilibrium is upper
bounded by d ·min{nb,mb}.

Proof. The scaled version of DASC Game Algorithm with the
potential function as ΦZ(S) = d·Φ(S) will converge to a Nash
equilibrium in the same number of rounds as DASC Game
Algorithm. Since ΦZ ∈ Z, the cost increase in ΦZ after
each strategy change of a worker is at least 1. Therefore,
the upper bound of the number of rounds is the maximum
value, Φmax, minus the minimum value, Φmin. We can see
that in DASC Game Algorithm, Φmax ≤ 0 and Φmin ≥
−d · min{nb,mb}. Consequently, the number of rounds to
reach an equilibrium is upper-bounded by d · min{nb,mb},
as stated by the lemma.

Then, we can prove the time complexity of DASC Game
Algorithm as follows.

Lemma IV.2. The time complexity of DASC Game in batch
b is O(d ·nb ·min{nb,mb}), where mb is the number of tasks
and nb is the number of workers in the batch.

Proof. As discussed above, the number of iteration is upper
bounded by O(d ·min{nb,mb}). In addition, we need to run
the best response for nb workers. For each worker w, the best
response requires computing the individual utility function for
at most |S|max possible tasks (line 4-6). Furthermore, the time
cost of computing individual utility function is O(|D|max)
(line 7). However, compared with nb and mb, |S|max and
|D|max are negligible. Thus, the time complexity is O(d ·nb ·
min{nb,mb}).

After proving that DASC Game can converge within poly-
nomial time, we discuss how good the resulting solution is.
Usually, researchers use social optimum (OPT), price of sta-
bility(PoS), and price of anarchy(PoA) to evaluate the quality
of an equilibrium. Specifically, the OPT is the solution that
yields the optimal values to all the objective functions, so that
their total utility is maximum. The PoS of a game is the ratio
between the best value among its equilibrium and the global
optimum and the PoA of a game is the ratio between the
worst value among its equilibriums and the global optimum.

Let U(S) denotes the summation of all workers’ utility,
U(S) ,

∑
w∈Wb

Uw(sw, sw), and recall that U(S) is equal to the

DA-SC object function. Then, we have the following lemma
to bound the potential function Φ(S).

Lemma IV.3. The potential function Φ(S) is bounded as
follows:

1

nwmax + 1
· U(S) ≤ |Φ(S)| ≤ nb

nw · (nb − nw)
· U(S)

where nw = min{nwmin, nb − nwmax}, nwmax is the
maximum number of workers who are assigned to the same
task and nwmin is the minimum number of workers who are
assigned to the same task.

Proof. Since nwmax ≥ nwt,∀t ∈ ∪Sw, we have∑
w∈Wb

∑
t∈∪Sw
∧t 6=sw

∏
f∈Dt∪{t}

af

(nwt + 1) · (nb − nwt)

=
∑

t∈∪Sw

∏
f∈Dt∪{t}

af

nwt + 1
≥

1

nwmax + 1
·
∑

t∈∪Sw

∏
f∈Dt∪{t}

af

Thus, |Φ(S)| ≥ 1
nwmax+1 · U(S). In addition, we have:∑

w∈Wb

∑
t∈∪Sw
∧t 6=sw

∏
f∈Dt∪{t}

af

(nwt + 1) · (nb − nwt)
≤

∑
w∈Wb

∑
t∈∪Sw
∧t 6=sw

∏
f∈Dt∪{t}

af

nwt · (nb − nwt)

≤
∑
w∈Wb

∑
t∈∪Sw

∏
f∈Dt∪{t}

af

nwt · (nb − nwt)
=

∑
t∈∪Sw

nb ·
∏
f∈Dt∪{t}

af

nwt · (nb − nwt)

≤
nb

nw · (nb − nw)
·
∑

t∈∪Sw

∏
f∈Dt∪{t}

af

Thus, we have |Φ(S)| ≤ nb
nw·(nb−nw) · U(S).

Based on the potential function’s bounds, we can prove the
bounds of the equilibrium obtained by DASC Game.

Theorem IV.2. In DASC Game, the PoS of each batch is
bounded by nw·(nb−nw)

nb·(nwmax+1) . In addition, the PoA of each batch

is bounded by nw·(nb−nw)
nb·min{nb,mb} · |̂Φ(S)|min, where |̂Φ(S)|min is

the minimum of Φ(S)’s local minimums.

Proof. Let S∗ be the optimal set of strategies in this batch
that maximize U(S), and let OPT = U(S∗). Further, let
S∗∗ be the set of strategies that yields the minimum of
the potential function Φ(S), i.e., the best Nash equilibrium.
From the Lemma IV.3 and since U(S∗) ≥ U(S),∀S and
|Φ(S∗∗)| ≥ |Φ(S)|,∀S, we have:

U(S
∗∗

) ≥
nw · (np − nw)

np
· |Φ(S

∗∗
)| ≥

nw · (nb − nw)

nb
· |Φ(S

∗
)|

≥
nw · (nb − nw)

nb · (nwmax + 1)
· U(S

∗
)

Since OPT = U(S∗), PoS = U(S∗∗)
OPT ≥

nw·(nb−nw)
nb·(nwmax+1) .

Next, let S# be the strategic configuration of any Nash
equilibrium obtained by DASC Game. Thus, we have:

Uw(s
#
w , s

#
w) ≥ Uw(s

′
w, s

#
w), ∀w ∈ W, ∀s′w ∈ Sw

That is, ∀s′w ∈ Sw, Φ(s#
w , s

#
w)−Φ(s′w, s

#
w) = Uw(s#

w , s
#
w)−

Uw(s′w, s
#
w) ≥ 0. Hence, Φ(s#

w , s
#
w) is a local maximum and

|Φ(s#
w , s

#
w)| is a local minimum. Thus, we have:

U(S
#

) ≥
nw · (nb − nw)

nb
· |Φ(S

#
)| ≥

nw · (nb − nw)

nb
· |̂Φ(S)|min

Since U(S∗) ≤ min{nb,mb}, we have:

PoA =
U(S#)

U(S∗)
≥

nw · (nb − nw)

nb ·min{nb,mb}
· |̂Φ(S)|min

TABLE IV: Experimental Settings on Real Data.
Parameters Values

the start time range [st−, st+] [0, 10], [0, 15], [0, 20], [0, 25], [0, 30]
the waiting time range [wt−, wt+] [1, 8], [1, 9], [1, 10], [1, 11], [1, 12]
the velocity range [v−, v+] ∗ 0.001 [1, 3], [1, 5], [1, 7], [1, 9], [1, 11]
the distance range [d−, d+] ∗ 0.01 [2, 2.5], [2.5, 3], [3, 3.5], [3.5, 4], [4, 4.5]

V. EXPERIMENTAL STUDY

A. Data Sets

We use both real and synthetic data to test our proposed DA-
SC approaches. Specifically, for real data, we use Meetup data
set from [17], which was crawled from meetup.com between
Oct. 2011 and Jan. 2012. There are 5,153,886 users, 5,183,840
events, and 97,587 groups in the Meetup data set, where each
user is associated with a location and a set of tags, each group
is associated with a set of tags, and each event is associated
with a location and a group who creates the event. The tags
of a group are treated as the tags of the events created by the
group. We use the locations and tags of users in the Meetup
data set to initialize the locations and the practiced skills of
workers in DA-SC, where each tag is considered as a skill
in our experiments. In addition, we utilize the locations and
tags of events to initialize the locations and the required skills
of tasks in our experiments. Each task will depend on other
tasks who contain more than two common tags with it and
are created before it. Since workers are unlikely to move
between two distant cities to conduct one spatial task, and
the constraints of expired time and maximum moving distance
also prevent workers from moving too far, we only consider
those user-and-event pairs located in one city. Specifically, we
select one famous and popular city, Hong Kong, and extract
Meetup records from the area of Hong Kong (with latitude
from 22.209◦ to 22.609◦ and longitude from 113.843◦ to
114.283◦).

For synthetic data, we generate locations of workers and
tasks in a 2D data space [0, 0.5]2, following the uniform
distribution. We vary the number of workers, tasks, and the
size of the skills’ universe to mimic a wide scale of real-
world application scenarios. In addition, we simulate the size
of each worker’s skill set with the uniform distribution within
the range [sp−, sp+] from [1, 5] to [1, 25]. Besides, we set the
size of each task’s dependency with the uniform distribution
within the range from [0, 0] (i.e., there is no dependency
between tasks) to [0, 25]. For each task t, we randomly add
tasks generated before t and their dependency set into t’s
dependency set until the size of t’s dependency set reaches
the generated value.

For both real and synthetic data sets, we simulate the
velocity of each worker with the uniform distribution within
the range [v−, v+] from [0.001, 0.003] to [0.001, 0.011]. For
the maximum moving distance of each worker, we generate it
following the uniform distribution within the range [d−, d+].
For temporal constraints, we set each worker’s and each task’s
start time and waiting time following the uniform distribution
within the range [st−, st+] and [wt−, wt+].

B. Approaches and Measurements

In the beginning, we conduct an experiment on small scale
data sets. The main purpose is to investigate the effectiveness

TABLE V: Experimental Settings on Synthetic Data.
Parameters Values

the number, r, of skill universe 50, 60, 70, 80, 90
the dependency size range [0,0], [0,5], [0, 10], [0, 15], [0, 20]
the skill set range for each worker [1, 5], [1, 10], [1, 15], [1, 20], [1, 25]
the number, m, of workers 3K, 4K, 5K, 6K, 7K
the number, n, of tasks 4K, 4.5K, 5K, 5.5K, 6K
the start time range [st−, st+] [0, 10], [0, 15], [0, 20], [0, 25], [0, 30]
the waiting time range [wt−, wt+] [1, 10], [1, 12], [1, 14], [1, 16], [1, 18]
the velocity range [v−, v+] ∗ 0.001 [1, 7], [1, 8], [1, 9], [1, 10], [1, 11]
the distance range [d−, d+] ∗ 0.01 [30, 32], [32, 34], [34, 36], [36, 38], [38, 40]

of approximation methods regarding the optimal solution. We
propose a depth-first search algorithm, namely DFS Algorithm,
which exactly enumerates all possible assignments to find the
optimal assignment. Each level in the search tree represents a
worker in the worker set and the children of one node are the
valid tasks that the worker represented by the next level can
take. In addition, we propose two baseline methods. The first
algorithm, namely Closest, greedily selects worker-and-task
pairs with the lowest moving distance for each worker. The
second algorithm, namely Random, randomly selects worker-
and-task pair for each worker.

After that, we conduct experiments on large scale data sets
to evaluate the effectiveness and efficiency of our two ap-
proaches, which includes DASC Greedy and DASC Game,
in terms of the size of the valid assignment and the running
time. As proved in Section II-D, the DA-SC problem is NP-
hard, thus it is infeasible to calculate the optimal result as the
ground truth in large scale datasets. Alternatively, we compare
our approaches with two aforementioned baseline methods
(Closest and Random) as well as a famous algorithm (g-D&C)
in a related paper [6]. The g-D&C algorithm keeps dividing
the problem into g subproblems on each level until finally, the
number of tasks in each subproblem is 1 (which can be solved
by the greedy algorithm on each one-task subproblem). Here,
the parameter g is estimated by a cost model to minimize the
computing cost. Note that, for DASC Game, if we strictly set
the termination condition as there is no worker changed his
strategy in the last iteration, the converging speed is very slow.
In practice, we usually set a threshold of the utility updating
ratio instead. In other words, if the utility updating ratio in a
round is lower than the threshold, we terminate the iteration
in DASC Game. Although with the increase of the threshold,
the running time of DASC Game will decrease, the score of
DASC Game will decrease too. Thus, we have to select a
proper threshold to trade off the score and the running time.

We run an experiment on the real datasets with different
termination condition. Specifically, the parameters used in the
experiment is the default values as shown in Table IV. We vary
the value of the threshold from 0 (there is no worker changed
his strategy in the last iteration) to 10%. As shown in Figure
2(a), when the threshold is larger than 5%, the score decreases
sharply. And Figure 2(b) illustrates that, with the increase of
the threshold, the running time decrease. Thus, to trade off the
score and the running time, we set the threshold as 5%.

In the following experiments, we examine the DASC Game
with strict termination condition, namely Game, and the
DASC Game with the threshold as 5%, namely GT. In ad-
dition, we examine the heuristic that using DASC Greedy for
DASC Game’s initialization, namely G&G. For simplicity, we
represent the DASC Greedy by Greedy.

(a) Score (b) Running Time
Fig. 2: Effect of the Threshold

TABLE VI: Experimental Results on Small-Scale Datasets
Algorithm Score Running Time (ms)

DFS 17 955514.9
G&G 17 1.9
Game 17 1.9

GT 17 1.9
Greedy 16 1.5
g-D&C 16 1.7
Closest 13 1.1
Random 12 1.4

In addition, we tested the performance of our proposed
algorithms on a real spatial crowdsourcing platform, namely
gMission [18]. In particular, gMission is a general laboratory
application, which records the active users’ trajectories and
pushes tasks to users based on their spatial locations. The users
claim the skills they have in their profiles on the gMission
and when they log in the gMission, they propose that when
they planed to log off and do not accept the assignments.
In order to hold sports meetings or sports games, some
schools and companies in Shaoxing City, Zhejiang Province,
China published some spatial tasks in the gMisssion. The task
requesters claim each tasks’ dependent tasks and the deadline
of the tasks’ assignments. We estimate each user’s movement
speed by their recent trajectories. In our experiments, we
test the algorithms’ performance with different tasks’ waiting
time range. Specifically, the tasks’ waiting time range in our
experiment is varied from [2,6] to [6,14].

Table IV and Table V show our experimental settings on real
data and synthetic data, where the default values of parameters
are in bold font. In each experiment, we vary one parameter
and set other parameters to their default values. Since Game,
GT, and Random algorithms use the random number, we run
those algorithms for 10 times for each experiment and report
the result with the average score. And for each experiment,
we report the running time and the assignment score (the
number of the valid assigned worker-and-task pairs) of our
tested approaches. All our experiments were run on an Intel
i7 CPU @2.2 GHz with 16GM RAM in Java.

C. Results on Small-Scale Datasets
We run the experiment on a small scale synthetic data sets.

Specifically, we set the number of workers is 20, the number
of tasks is 40, and the size of the skill universe is 10. In
addition, the range of each worker’s skill set’s size is [1,3]
and the range of each task’s dependency set’s size is [0, 8].
Other parameters are the default values of the experimental
settings on synthetic data (Table V). Table VI shows the score
and the running time of each algorithm. We can see that the
scores of four proposed methods follow the bound which we
proved in Section III and Section IV. The compared algorithm
g-D&C has a similar performance with we proposed greedy
algorithm Greedy. Besides, the two baseline algorithms’ score
is much worse than the two proposed methods. In addition, we
can see that the two proposed methods cost very little running

(a) Score (b) Running Time
Fig. 3: Effect of the Moving Distance Range [d−, d+] (Real)

(a) Score (b) Running Time
Fig. 4: Effect of the Velocity Range [v−, v+] (Real)

time while the DFS Algorithm spends vast amounts of time.
Thus, we can draw a conclusion that DFS Algorithm is only
suitable for small scale data sets and our proposed algorithms
have good acceptances compared with the optimal results.

D. Results on Real Datasets

Effect of the Range of the Maximum Moving Distance
[d−, d+]. Figure 3 illustrates the experimental results on dif-
ferent ranges, [d−, d+], of each worker’s maximum moving
distance d from [0.02, 0.025] to [0.04, 0.045]. In Figure 3(a),
the assignment scores of all the seven approaches increase,
when the value range of maximum moving distance gets
larger. The reason is that the increase of d enlarges the access
range of workers. The scores of four proposed algorithms
are much better than those of two baseline algorithms. It is
reasonable because the baseline algorithms do not consider
tasks’ dependency constraints when they allocate tasks and
many of assignments are invalid. In addition, the G&G, Game,
and GT achieve higher scores than the Greedy Algorithm. The
reason is that each worker has multiple skills and for each
skill, the number of workers who has the skill is different.
When the Greedy assigns a task with a worker, it just selects
a worker who has this skill and can reach the task on
time. In other words, the Greedy does not guarantee that the
assigned worker is the optimal choice for this task. Maybe the
optimal choice is assigning another worker to do this task and
assigning this worker to another task whose required skill can
only be satisfied by this worker. However, the G&G, Game,
and GT can avoid this case. By checking all the strategies
that each worker can take, the G&G, Game, and GT can
assign the worker to the task whose required skill is the
skill that few workers have. The proposed algorithms achieve
better results than the compared algorithm g-D&C, except the
Greedy Algorithm. The reason is that in the Meetup dataset,
the users and events which have the same tags are usually in
close locations and the dependency between tasks is simply.
The advantage of g-D&C algorithm in matching makes up
the shortcoming in the dependency process. Besides, G&G
achieve the highest score among the six algorithms. The reason
is that, compared with the random initialization in Game and
GT, the G&G can reach a Nash equilibrium with better quality.

As shown in Figure 3(b), the running time of our four DA-
SC approaches increase, when the range of maximum moving
distance gets larger. The reason is that when the maximum

(a) Score (b) Running Time
Fig. 5: Effect of the Start Time Range [st−, st+] (Real)

moving distance increases, each worker has more valid tasks
which thus leads to the higher complexity of the DA-SC
problem and the increase of the running time. Specifically,
the Greedy achieves much lower running time than the G&G,
Game, and GT. The reason is that the G&G, Game, and GT has
a large search space and in each round, it searches the whole
search space while in each round the Greedy just searches
an associate task set with the largest size and can be fully
assigned with a group of workers. In addition, the running
time of G&G is the highest. The reason is that, compared with
the random initialization in Game and GT, its initialization
costs much more time. Besides, the running time of g-D&C is
higher than the Greedy and GT. The reason is that the g-D&C
has to filter the invalid assignments which do not satisfy the
dependency constraint after each round and repeatedly make
the assignments for the left tasks and workers.
Effect of the Range of the Velocity [v−, v+]. Figure 4 illus-
trates the experimental results on different ranges, [v−, v+], of
each worker’s velocity v from [0.001, 0.003] to [0.001, 0.011].
In Figure 4(a), when the value range of velocity gets larger, the
assignment scores of all the seven approaches increase. The
reason is that, with the increase of v, workers can reach more
tasks on time. The proposed algorithms have better results
than the g-D&C except the Greedy. As shown in Figure 4(b),
the running time of our four approaches increase, when the
range of velocity gets larger. The reason is that, when the
velocity increases, each worker has more valid tasks which
thus leads to the higher complexity of the DA-SC problem
and the increase of the running time. Specifically, the G&G,
Game and GT algorithm are more sensitive. The reason is that,
when the velocity increases, each worker’s strategy space is
larger, which dramatically increases the algorithms’ running
time.
Effect of the Range of the Start Timestamp [st−, st+].
Figure 5 illustrates the experimental results on different ranges,
[st−, st+], of each worker’s/task’s start timestamp st from
[0, 10] to [0, 30]. In Figure 5(a), the assignment scores of all
the six approaches decrease, when the value range of start
timestamp gets larger. The reason is that the increase of st’s
range disperses the tasks/workers over time and thus each
task has less valid workers who can reach the task timely.
The G&G achieves the highest score and the scores of four
proposed algorithms are much better than those of two baseline
algorithms. The proposed algorithms also have better results
than the g-D&C except the Greedy. As shown in Figure 5(b),
the running time of our seven approaches decrease, when the
range of start timestamp gets larger. The reason is that, when
the range increase, each worker has fewer valid tasks which
thus leads to lower complexity of the DA-SC problem and the

(a) Score (b) Running Time
Fig. 6: Effect of the Waiting Time Range [wt−, wt+] (Real)

(a) Score (b) Running Time
Fig. 7: Effect of the Dependency Size Range (Synthetic)

decrease of the running time. Specifically, the G&G, Game and
GT algorithm are more sensitive. The reason is that, when the
range increases, each worker’s strategy space is smaller, which
dramatically decreases the algorithms’ running time.
Effect of the Range of the Waiting Time [wt−, wt+].
Figure 6 illustrates the experimental results on different ranges,
[wt−, wt+], of each worker’s/task’s waiting time wt from [1, 8]
to [1, 12]. In Figure 6(a), the assignment scores of all the seven
approaches increase, when the value range of waiting time gets
larger. The reason is that the increase of wt let each worker
can reach more tasks timely. The G&G achieves the highest
score and the scores of four proposed algorithms are much
better than those of two baseline algorithms. The proposed
algorithms also have better results than the g-D&C except the
Greedy. As shown in Figure 6(b), the running time of our
four approaches increase, when the range of waiting time gets
larger. The reason is that, when the waiting time increase,
each worker has more valid tasks which thus leads to the
higher complexity of the DA-SC problem and the increase of
the running time.

E. Results on Synthetic Datasets

In order to examine the effects of the size of the skill
universe, the number of workers, the number of tasks, the
size of each task’s dependency set, and the size of each
worker’s skill set, we generate the synthetic dataset and run
the experiments on it. We also test the effects of the number
of skill universe, the skill set range of workers, the start
time range, the waiting time range, the velocity range and
the distance range on the synthetic data sets. Due to the
space limitation, please refer to Appendix C of our technical
report [13] for details.
Effect of the range of dependency set size, |D|. Figure 7
illustrates the experimental results on different ranges, of each
task’s dependency set size |D| from [0, 0] (i.e., tasks are all
independent) to [0, 20]. In Figure 7(a), the assignment scores
of all the seven approaches decrease, when the value range
of each task’s dependency gets larger. The reason is that the
increase of |D| let the tasks’ dependency constraints are more
difficult to satisfy. Specifically, the two baseline algorithms
and the compared algorithm g-D&C are more sensitive to the

(a) Score (b) Running Time
Fig. 8: Effect of the Number of Tasks (Synthetic)

increase and their score decrease sharply with the increase
of |D|. The reason is that, with the increase of |D|, the
tasks’ dependency constraints are more difficult to satisfy and
the assignments made by the two baseline algorithms and
the compared algorithm g-D&C which do not consider the
dependency constraints are more likely be invalid. As shown
in Figure 7(b), the running time of Game and GT keeps stable
when the value range of each task’s dependency gets larger,
because the change of dependency’s size does not influence
the search space. Because the time cost of generating and
updating associative task sets in Greedy and G&G is only
related to the task number and when the dependency size
is small, the number of associative task sets decrease slowly
during the algorithm’s running, when the dependency size is
small, the running time G&G and Greedy is high. But when
the dependency size is bigger, their running time decreases
sharply. When the dependency size grows, the dependency
constraints are more difficult to satisfy and g-D&C has to run
more rounds, which leads its running time growing constantly.
Effect of the Number of Tasks m. Figure 8 illustrates the
experimental results on different number, m, of tasks from
4K to 6K. In Figure 8(a), when the number of tasks gets
larger, the assignment scores of seven approaches increase.
The reason is that the increase of m let each worker has more
valid tasks. But the two baseline algorithms and the compared
algorithm g-D&C are not as sensitive to the change of number
of tasks as our proposed algorithms do. The reason is that since
the two baseline algorithms and the g-D&C do not consider
the dependency constraint when they allocate the tasks, the
increase of the number of tasks that each worker also decreases
the probability that the assigned task’s dependency constraint
is satisfied. As shown in Figure 8(b), the running time of our
four approaches increase, when the number of tasks gets larger.
The reason is that, when the number of tasks increases, each
worker has more valid tasks which thus leads to the higher
complexity of the DA-SC problem and the increase of the
running time.
Effect of the Number of Workers n. Figure 9 illustrates
the experimental results on different number, n, of workers
from 3K to 7K. In Figure 9(a), the assignment scores of all
the seven approaches increase, when the number of workers
gets larger. The reason is that the increase of n let each task
has more valid workers. As shown in Figure 9(b), the running
time of our four approaches increases, when the number of
workers gets larger. Since the g-D&C’s running time is mainly
dominated by the rounds that the g-D&C runs which is related
to the tasks’ dependency sizes, the g-D&C’s running time is
not as sensitive as our proposed algorithms. When the |WS|
is small, g-D&C needs more time than other algorithms.

(a) Score (b) Running Time
Fig. 9: Effect of the Number of Workers (Synthetic)

F. Results on gMission Platfrom

Figure 10 illustrates the seven algorithms’ performance over
the real gMission platform on different ranges, [wt−, wt+],
of each task’s waiting time wt from [2, 6] to [6, 14] minutes.
In this experiment, during the 15 minutes, 71 workers log
in the platform and 167 tasks are proposed. In addition, the
workers’ waiting time is in the range of 1 to 4 minutes and
their estimated velocity is in range of 5 km/h to 67 km/h.
Besides, the workers’ maximum moving distance is in the
range of 2 km to 8 km and the tasks’ dependency size is
in the range of 0 to 4.

In Figure 10(a), the assignment scores of all the seven
approaches increase, when the value range of waiting time gets
larger. The reason is that the increase of wt let each worker
can reach more tasks timely. Specifically, the G&G achieves
the highest score and the scores of four proposed algorithms
are much better than those of two baseline algorithms and the
compared algorithm g-D&C. Since the dataset is small, there
is no big difference between the results of G&G and Game.
Since the GT is terminated before reaching an equilibrium, its
result is slightly worse than the Game. As shown in Figure
10(b), the running time of our four approaches increase, when
the range of waiting time gets larger. The reason is that,
when the waiting time increase, each worker has more valid
tasks which thus leads to the higher complexity of the DA-SC
problem and the increase of the running time.

We finally summarize our findings.
• Our four approximate algorithm (G&G, Game, GT,

and Greedy) can achieve results with much more valid
worker-and-task pairs compared with that of baseline
algorithms and g-D&C in all scenarios.

• The heuristic of utilizing DASC Greedy to initialize
DASC Game is effective while it costs much time.

• The Greedy runs much faster than another three approx-
imate algorithms while can achieve results with a close
score compared with them.

VI. RELATED WORK

Crowdsourcing has attracted considerable attention due to
its high practicality for real-world applications. Without con-
sidering the location constraint, previous work [19], [20], [21]
studied the task assignment in crowdsourcing to finish the
tasks more efficiently and accurately.

In spatial crowdsourcing [1], workers are requested to
physically move to specific locations to conduct tasks on
sites. Based on the ontology [22], from the perspective of the
publishing models, task assignment in spatial crowdsourcing
can be classified into two groups: worker selected tasks (WST)
mode and server assigned tasks (SAT) mode. Specifically, for

(a) Score (b) Running Time
Fig. 10: Effect of the Tasks’ Waiting Time Range (gMission)

the WST mode, spatial tasks are broadcast to all the workers or
group of close workers, then the workers select preferred tasks
by themselves. In prior work [10] in task assignment in SAT
mode, the author proposed methods to design a travel route for
each worker such that the worker can finish as many tasks as
possible before the deadlines. In the contrast, in WST mode,
the workers reveal their real time locations to the server, then
the server will assign the suitable tasks to workers. Since the
server has the control of the task assignment in WST mode,
it is more convenient to optimize the targeted goal and many
existing studies [1], [22], [23], [7], [24] in task assignment in
spatial crowdsourcing are using the WST mode.

In particular, Kazemi et al. [1] studied the problem of
maximizing the number of assigned problem under the con-
straint of the working areas and the capacities of workers
and the deadlines of tasks. With considering the reliability
of workers, Cheng et al. [23] tackle the problem of reliable
diversity-based spatial crowdsourcing problem, which assigns
a set of workers to each task such that the spatial/temporal
diversity and the reliability score of the answers to the task is
optimized. Tong et al. [24] studied the online task assignment
for spatial crowdsourcing, in which the server needs to assign
the most suitable worker to each task when the workers
and tasks are coming one-by-one and the platform has no
information about the future tasks or workers. Previous studies
on multi-skill oriented spatial crowdsourcing [6], [7] tackle
the problem through finding a set of workers and the union
of their skill sets can fully support the requirement of the
assigned complex task. However, the existing methods do
not consider the dependencies between the subtasks such that
some assigned workers need to wait until their subtasks are
ready to conduct, which makes that the existing methods are
not efficient. In this paper, we take the dependencies between
tasks into consideration and propose tailored approximation
algorithms to efficiently and effectively solve the DA-SC
problems with theory bounds of the number of the assigned
worker-and-task pairs for each batch process, which had not
been studied before.

VII. CONCLUSION

In this paper, we proposed Dependnecy-Aware Spatial
Crowdsourcing (DA-SC) problem, a new problem of batch-
based task allocation in spatial crowdsourcing, where tasks
have been allocated following the dependency constraints. To
address the DA-SC problem, we proposed two approximation
algorithms, including greedy and game-theoretic approaches.
Specifically, we defined the task combination and design a
submodule function in the greedy approach, which greedily

allocates a task combination with the largest size and guar-
antees the approximate bounds of the results in each batch
process. In addition, we propose a game-theoretic approach to
further increase the number of the assigned worker-and-tasks.
We conclude that our proposed two solutions are effective and
efficient in extensive experiments on both real and synthetic
data sets.

REFERENCES

[1] L. Kazemi and C. Shahabi, “Geocrowd: enabling query answering with
spatial crowdsourcing,” in SIGSPATIAL, pp. 189–198, ACM, 2012.

[2] “[online] Uber.” https://www.uber.com, 2019.
[3] “[online] Waze.” https://www.waze.com/, 2019.
[4] “[online] Google Maps’ Street View.” https://www.google.com/maps/

views/streetview, 2019.
[5] “[online] Uber Eats.” https://www.ubereats.com, 2019.
[6] P. Cheng, X. Lian, et al., “Task assignment on multi-skill oriented spatial

crowdsourcing,” IEEE TKDE, vol. 28, no. 8, pp. 2201–2215, 2016.
[7] D. Gao, Y. Tong, J. She, T. Song, L. Chen, and K. Xu, “Top-k team

recommendation and its variants in spatial crowdsourcing,” Data Science
and Engineering, vol. 2, no. 2, pp. 136–150, 2017.

[8] H. Rahman, S. Thirumuruganathan, et al., “Worker skill estimation in
team-based tasks,” PVLDB, vol. 8, no. 11, pp. 1142–1153, 2015.

[9] “[online] 4-dimensional Matching.” https://link.springer.com/content/
pdf/10.1007%2Fb11961.pdf, 2019.

[10] D. Deng, C. Shahabi, and U. Demiryurek, “Maximizing the number
of worker’s self-selected tasks in spatial crowdsourcing,” in ACM
SIGSPATIAL, pp. 324–333, 2013.

[11] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[12] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” Information processing letters, vol. 70, no. 1, pp. 39–45, 1999.

[13] “[online] Technical Report.” https://cspcheng.github.io/pdf/DASC.pdf.
[14] N. Armenatzoglou, H. Pham, V. Ntranos, D. Papadias, and C. Shahabi,

“Real-time multi-criteria social graph partitioning: A game theoretic
approach,” in ACM SIGMOD, pp. 1617–1628, 2015.

[15] J. F. Nash et al., “Equilibrium points in n-person games,” PNAS, vol. 36,
no. 1, pp. 48–49, 1950.

[16] D. Monderer and L. S. Shapley, “Potential games,” Games and economic
behavior, vol. 14, no. 1, pp. 124–143, 1996.

[17] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and J. Han, “Event-
based social networks: linking the online and offline social worlds,” in
ACM SIGKDD, pp. 1032–1040, 2012.

[18] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C. Cao,
Y. Tong, and C. J. Zhang, “gmission: A general spatial crowdsourc-
ing platform,” Proceedings of the VLDB Endowment, vol. 7, no. 13,
pp. 1629–1632, 2014.

[19] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and W.-
C. Tan, “Asking the right questions in crowd data sourcing,” in ICDE,
pp. 1261–1264, 2012.

[20] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng, “Qasca: A quality-
aware task assignment system for crowdsourcing applications,” in ACM
SIGMOD, pp. 1031–1046, 2015.

[21] J. Fan, G. Li, B. C. Ooi, K.-l. Tan, and J. Feng, “icrowd: An adaptive
crowdsourcing framework,” in ACM SIGMOD, pp. 1015–1030, 2015.

[22] H. To, C. Shahabi, and L. Kazemi, “A server-assigned spatial crowd-
sourcing framework,” ACM TSAS, 2015.

[23] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and J. Zhao,
“Reliable diversity-based spatial crowdsourcing by moving workers,”
PVLDB, vol. 8, no. 10, pp. 1022–1033, 2015.

[24] Y. Tong, J. She, et al., “Online mobile micro-task allocation in spatial
crowdsourcing,” in ICDE, pp. 49–60, IEEE, 2016.

https://www.uber.com
https://www.waze.com/
https://www.google.com/maps/views/streetview
https://www.google.com/maps/views/streetview
https://www.ubereats.com
https://link.springer.com/content/pdf/10.1007%2Fb11961.pdf
https://link.springer.com/content/pdf/10.1007%2Fb11961.pdf
https://cspcheng.github.io/pdf/DASC.pdf

APPENDIX

A. The derivation of the approximation ratio of DASC Greedy
Let ρj(M) = Sum(M∪〈twj , tcj〉)−Sum(M) and E is the

universe of assignments. Inspired by the existing work [12],
according to the monotonicity and submodularity of Sum(M),
we have the following lemma.

Lemma A.1. For any assignment M and M ′, it holds,

Sum(M ′)− Sum(M)

≤
∑

〈twi,tci〉∈M′/M

ρi(M)−
∑

〈twi,tci〉∈M/M′

ρi(M ∪M ′ − 〈twi, tci〉)

Proof. Based Sum(M)’s submodularity, we can have

ρtc(M) ≥ ρtc(M ′),∀M ⊆M ′, tc ∈ E −M ′.
Then, for arbitrary M and M ′ with M ′−M = {j1, · · · , jr}

and M −M ′ = {k1, · · · , kq} we have:

Sum(M ∪M ′)− Sum(M)

=

r∑
t=1

[Sum(M ∪ {j1, · · · , jt})− Sum(S ∪ {j1, · · · , jt−1})]

=

r∑
t=1

ρjt(M ∪ {j1, · · · , jt−1}) ≤
r∑

t=1

ρjt(M) =
∑

j∈M′−M

ρj(M)

Similarly, we also have:

Sum(M ∪M ′)− Sum(M ′)

=

q∑
t=1

[Sum(M ′ ∪ {k1, · · · , kt})− Sum(M ′ ∪ {k1, · · · , kt−1})]

=

q∑
t=1

ρkt(M
′ ∪ {k1, · · · , kt−1})

≥
q∑

t=1

ρkt(M
′ ∪M − {kt}) =

∑
j∈M−M′

ρj(M ∪M ′ − {j})

After subtracting above two inequality, we have:

Sum(M ′)

≤Sum(M ′ ∪M)−
∑

k∈M−M′

ρk(M ∪M ′ − {k})

≤Sum(M) +
∑

j∈M′−M

ρj(M)−
∑

k∈M−M′

ρk(M ∪M ′ − {k})

In addition, based on the observation that 0 ≤ ρtc(M) ≤ ψ,
∀M ⊆ E, tc ∈ E−M , where ψ is the upper bound of ρtc(M),
we have:

Sum(M ′) ≤ Sum(M) +
∑

tc∈M′−M

ρtc(M), ∀M,M ′ ⊆ E.

Note that |M | ≤ K, where K = min{nb,mb}. Let
Sum(Mopt) be the value of an optimal solution and M t be
the assignment set which is generated after t rounds, i.e.,
Sum(M t) =

∑t−1
i=0 ρi. Suppose the DASC Greedy Algorithm

stops after K∗ rounds, then we have the following lemma.

Lemma A.2. Suppose tct is added by DASC Greedy Al-
gorithm in the t-th round, let ρt−1 = ρtct(M

t−1). The
corresponding {ρi}K

∗−1
i=0 satisfy: Sum(Mopt) ≤

∑t−1
i=0 ρi +

K · ρt, t = 0, · · · ,K∗ − 1.

Proof. Since ρj(M) ≤ ρt, ∀j ∈ T − S, according to Lemma
A.1, we have:

Sum(Mopt) ≤ Sum(M t) +
∑

tc∈Mopt−Mt

ρtc(M
t)

≤
t−1∑
i=0

ρi +
∑

tc∈Mopt−Mt

ρt

In addition, |Mopt −M t| ≤ K. Thus,

Sum(Mopt) ≤
t−1∑
i=0

ρi +
∑

tc∈Mopt−Mt

ρt ≤
t−1∑
i=0

ρi +K · ρt

Let Mgreedy be the assignment gotten by DASC Greedy
Algorithm. Then, we have the following theorem to show that
our greedy algorithm can provide solution with a theoretic
guaranteed bound with respect to the optimal result.

Theorem A.1. The matching size returned by DASC Greedy
Algorithm is at least (1− 1

e) · |Mopt|.

Proof. Based on the Lemma A.2, we have

Sum(Mopt) ≤ K · ρ0 = K · (Sum(M1))

Sum(Mopt)−Sum(M1) ≤ K·ρ1 = K·(Sum(M2)−Sum(M1))
Similarly, we can get the inequalities when t = 2, · · · ,K.
Thus, we have:

Sum(Mopt − Sum(Mgreedy))

Sum(Mopt)
≤
(
K − 1

K

)K

Thus, the matching size returned by DASC Greedy Algorithm
is at least (1− 1

e) · |Mopt|.

B. Proof of Theore IV.1

Theorem IV.1. DA-SC problem constitutes an exact potential
game.

Proof. Recall from Section IV-A, that it suffices to show
that for every worker w, who changes his strategy from the
current one sw to the best-response s′w, and for all possible
combinations of the other players’ strategies sw it holds that:

Uw(sw, sw)− Uw(s′w, sw) = Φ(sw, sw)− Φ(s′w, sw)
Suppose npsw and nps′w are the numbers of workers who are

assigned to the tasks sw and s′w in the assignment (sw, sw),
respectively. Similarly, npsw and nps′w are the numbers of
workers who are assigned to the tasks sw and s′w in the
assignment (s′w, sw), respectively. Note that, npsw = npsw +1
and nps′w = nps′w + 1. Indeed, when Dsw 6= ∅ and Ds′w

6= ∅,
we have:

Φ(sw, sw)− Φ(s′w, sw)

=−

 (α− 1) ·
∏
f∈Ds′w

af

α · (nps′w + 1)
+
∑
s′w∈Dl

∏
f∈Dl∪{l} af

α · (nps′w + 1) · |Dl|


+

(
(α− 1) ·

∏
f∈Dsw

af

α · (npsw + 1)
+
∑
sw∈Dl

∏
f∈Dl∪{l} af

α · (npsw + 1) · |Dsw |

)

=

(
(α− 1) ·

∏
f∈Dsw

af

α · npsw
+
∑
sw∈Dl

∏
f∈Dl∪{l} af

α · npsw · |Dsw |

)

−

 (α− 1) ·
∏
f∈Ds′w

af

α · nps′w
+
∑
s′w∈Dl

∏
f∈Dl∪{l} af

α · nps′w · |Ds′w
|


=Uw(sw, sw)− Uw(s′w, sw)

Similarly, when (1) Dsw = ∅ and Ds′w
6= ∅; (2) Dsw 6= ∅

and Ds′w
= ∅; (3) Dsw = ∅ and Ds′w

= ∅, we can have
the same result: Φ(sw, sw) − Φ(s′w, sw) = Uw(sw, sw) −
Uw(s′w, sw). Due to the space limitation, we do not show the
details here. For the full proof, please refer to Appendix A of
our technical report [13].

When Dsw = ∅ and Ds′w
6= ∅, we have:

Φ(sw, sw)− Φ(s′w, sw)

=−

 (α− 1) ·
∏
f∈Ds′w

af

α · (nps′w + 1)
+
∑
s′w∈Dl

∏
f∈Dl∪{l} af

α · (nps′w + 1) · |Ds′w
|


+

(∏
f∈Dsw

af

npsw + 1
+
∑
sw∈Dl

∏
f∈Dl∪{l} af

α · (npsw + 1) · |Dsw |

)

=

(∏
f∈Dsw

af

npsw
+
∑
sw∈Dl

∏
f∈Dl∪{l} af

α · npsw · |Dsw |

)

−

 (α− 1) ·
∏
f∈Ds′w

af

α · nps′w
+
∑
s′w∈Dl

∏
f∈Dl∪{l} af

α · nps′w · |Ds′w
|


=Uw(sw, sw)− Uw(s′w, sw)

When Dsw 6= ∅ and Ds′w = ∅, we have:

Φ(sw, sw)− Φ(s′w, sw)

=−

∏f∈Ds′w
af

nps′w + 1
+
∑
s′w∈Dl

∏
f∈Dl∪{l} af

α · (nps′w + 1) · |Ds′w
|


+

(
(α− 1) ·

∏
f∈Dsw

af

α · (npsw + 1)
+
∑
sw∈Dl

∏
f∈Dl∪{l} af

α · (npsw + 1) · |Dsw |

)

=

(
(α− 1) ·

∏
f∈Dsw

af

α · npsw
+
∑
sw∈Dl

∏
f∈Dl∪{l} af

α · npsw · |Dsw |

)

−

∏f∈Ds′w
af

nps′w
+
∑
s′w∈Dl

∏
f∈Dl∪{l} af

α · nps′w · |Ds′w
|


=Uw(sw, sw)− Uw(s′w, sw)

When Dsw = ∅ and Ds′w
= ∅, we have:

Φ(sw, sw)− Φ(s′w, sw)

=−

∏f∈Ds′w
af

nps′w + 1
+
∑
s′w∈Dl

∏
f∈Dl∪{l} af

α · (nps′w + 1) · |Ds′w |


+

(∏
f∈Dsw

af

npsw + 1
+
∑
sw∈Dl

∏
f∈Dl∪{l} af

α · (npsw + 1) · |Dsw |

)

=

(∏
f∈Dsw

af

npsw
+
∑
sw∈Dl

∏
f∈Dl∪{l} af

α · npsw · |Dsw |

)

−

∏f∈Ds′w
af

nps′w
+
∑
s′w∈Dl

∏
f∈Dl∪{l} af

α · nps′w · |Ds′w
|


=Uw(sw, sw)− Uw(s′w, sw)

Then, we proved DA-SC problem is an exact potential game.

C. Results on Synthetic Data Sets

Effect of the size of the skill universe r. Figure 11 illustrates
the experimental results on different size, r, of the skill
universe Ψ from 50 to 90. In Figure 11(a), the assignment
scores of all the seven approaches decrease, when the size of
the skill universe gets larger. The reason is that, the increase of
r disperses the tasks/workers over skills. The G&G achieves
the highest score and the scores of four proposed algorithms
are much better than those of two baseline algorithms and the
compared algorithm g-D&C. As shown in Figure 11(b), the
running time of our four approaches decrease, when the size
of the skill universe gets larger. The reason is that, when the
size of the skill universe gets larger, the number of tasks that
each worker can serve decreases which thus leads to lower
complexity of the DA-SC problem and the decrease of the
running time.
Effect of the Range of each Worker’s Skill Size [sp−, sp+].
Figure 12 illustrates the experimental results on different
ranges, [sp−, sp+], of each worker’s skill set |WS| from [1, 5]
to [1, 30]. In Figure 12(a), the assignment scores of all the six
approaches increase, when the value range of each worker’s
skill size gets larger. The reason is that, the increase of |WS|
let each task has more valid workers. The G&G achieves
the highest score and our proposed algorithms achieve better
scores than those of two baseline algorithms and the compared
algorithm g-D&C. As shown in Figure 12(b), the running time
of our four approaches increases, when the range of each
worker’s skill size gets larger. Since the g-D&C’s running
time is mainly dominated by the rounds that the g-D&C runs
which is related to the tasks’ dependency sizes, the g-D&C’s
running time is not as sensitive as our proposed algorithms.
When the |WS| is small, g-D&C needs more time than other
algorithms.
Effect of the Range of the Maximum Moving Distance
[d−, d+]. Figure 13 illustrates the experimental results on
different ranges, [d−, d+], of each worker’s maximum moving
distance d from [0.3, 0.32] to [0.38, 0.4]. In Figure 4(a), when
the value range of maximum moving distance gets larger,
the assignment scores of all the seven approaches increase.

(a) Score (b) Running Time
Fig. 13: Effect of the Moving Distance Range [d−, d+] (Synthetic)

(a) Score (b) Running Time
Fig. 14: Effect of the Velocity Range [v−, v+] (Synthetic)

(a) Score (b) Running Time
Fig. 15: Effect of the Start Time Range [st−, st+] (Synthetic)

(a) Score (b) Running Time
Fig. 16: Effect of the Waiting Time Range [wt−, wt+] (Synthetic)

(a) Score (b) Running Time
Fig. 11: Effect of the Size of the Skill Universe (Synthetic)

(a) Score (b) Running Time
Fig. 12: Effect of each Worker’s Skill Size Range (Synthetic)

The reason is that, with the increase of d, workers can reach
more tasks. As shown in Figure 13(b), the running time of
our four approaches increase, when the range of maximum
moving distance gets larger. The reason is that, when the

maximum moving distance increase, each worker has more
valid tasks which thus leads to higher complexity of the DA-
SC problem and the increase of the running time. However,
when the constraint of d is relaxed, the constraints from other
parameters prevent the running time keeping growing.
Effect of the range of the velocity, [v−, v+]. Figure 14 illus-
trates the experimental results on different ranges, [v−, v+], of
each worker’s velocity v from [0.001, 0.007] to [0.001, 0.011].
In Figure 14(a), when the value range of velocity gets larger,
the assignment scores of all the seven approaches increase. The
reason is that, with the increase of v, workers can reach more
tasks on time. As shown in Figure 14(b), the running time
of our four approaches increase, when the range of velocity
gets larger. The reason is that, when the velocity increase,
each worker has more valid tasks which thus leads to higher
complexity of the DA-SC problem and the increase of the
running time.
Effect of the range of the start timestamp, [st−, st+]. Figure
15 illustrates the experimental results on different ranges,
[st−, st+], of each worker’s/task’s start timestamp st from
[0, 10] to [0, 30]. In Figure 15(a), the assignment scores of
all the seven approaches decrease, when the value range of
start timestamp gets larger. The reason is that, the increase of
st’s range disperses the tasks/workers over time and thus each
task has less valid workers. The G&G achieves the highest
score and the scores of four proposed algorithms are much
better than those of two baseline algorithms and the compared
algorithm g-D&C. As shown in Figure 15(b), the running
time of our four approaches decreases, when the range of
start timestamp gets larger. The reason is that, when the range
increase, each worker has less valid tasks which thus leads to
lower complexity of the DA-SC problem and the decrease of
the running time.
Effect of the range of the waiting time, [wt−, wt+]. Figure
16 illustrates the experimental results on different ranges,
[wt−, wt+], of each worker’s/task’s waiting time wt from
[1, 10] to [1, 18]. In Figure 16(a), the assignment scores of all
the six approaches increase, when the value range of waiting
time gets larger. The reason is that, the increase of wt let
each worker can reach more tasks timely. The G&G achieves
the highest score and the scores of four proposed algorithms
are much better than those of two baseline algorithms and
the compared algorithm g-D&C. As shown in Figure 16(b),
the running time of our four approaches increase, when the
range of waiting time gets larger. The reason is that, when the
waiting time increase, each worker has more valid tasks which
thus leads to higher complexity of the DA-SC problem and
the increase of the running time. Since the g-D&C’s running
time is mainly dominated by the rounds that the g-D&C runs
which is related to the tasks’ dependency sizes, the g-D&C’s
running time is not as sensitive as our proposed algorithms.
When the [wt−, wt+] is small, g-D&C needs more time than
other algorithms.

	Introduction
	Problem Definition
	Heterogeneous Workers
	Dependency-aware Spatial Tasks
	The Dependency-aware Spatial Crowdsourcing Problem
	Hardness of DA-SC Problem

	Greedy Approach
	Associative Task Set
	DASC_Greedy Algorithm
	Theoretic Analyses

	Game THEORETIC APPROACH
	Game Theory
	Game-Theoretic Algorithm
	Theoretic Analyses

	Experimental Study
	Data Sets
	Approaches and Measurements
	Results on Small-Scale Datasets
	Results on Real Datasets
	Results on Synthetic Datasets
	Results on gMission Platfrom

	Related Work
	Conclusion
	References
	Appendix
	The derivation of the approximation ratio of DASC_Greedy
	Proof of Theore IV.1
	Results on Synthetic Data Sets

