
Fast Graph-based Indexes Merging for Approximate Nearest
Neighbor Search

Zekai Wu1, Jiabao Jin2, Peng Cheng3, Xiaoyao Zhong2, Lei Chen4,5, Zhitao Shen2, Jingkuan Song3,
Xiaofeng Cao3, Heng Tao Shen3, Xuemin Lin6

1East China Normal University, Shanghai, China; 2Ant Group, Shanghai, China; 3Tongji University, Shanghai, China;
4HKUST (GZ), Guangzhou, China; 5HKUST, Hong Kong SAR, China; 6Shanghai Jiaotong University, Shanghai, China

zekaiwu@stu.ecnu.edu.cn; jinjiabao.jjb@antgroup.com; cspcheng@tongji.edu.cn; zhongxiaoyao.zxy@antgroup.com;
leichen@cse.ust.hk; zhitao.szt@antgroup.com; jingkuan.song@gmail.com; xiaofeng.cao.uts@gmail.com; shenhengtao@hotmail.com;

xuemin.lin@gmail.com

ABSTRACT
As the state-of-the-art methods for high-dimensional data retrieval,
Approximate Nearest Neighbor Search (ANNS) approaches with
graph-based indexes have attracted increasing attention and play a
crucial role inmany real-world applications, e.g., retrieval-augmented
generation (RAG) and recommendation systems. Unlike the exten-
sive works focused on designing efficient graph-based ANNS meth-
ods, this paper delves into merging multiple existing graph-based
indexes into a single one, which is also crucial in many real-world
scenarios (e.g., cluster consolidation in distributed systems and
read-write contention in real-time vector databases). We propose a
Fast Graph-based Indexes Merging (FGIM) framework with three
core techniques: (1) Proximity Graphs (PGs) to 𝑘 Nearest Neighbor
Graph (𝑘-NNG) transformation used to extract potential candidate
neighbors from input graph-based indexes through cross-querying,
(2) 𝑘-NNG refinement designed to identify overlooked high-quality
neighbors and maintain graph connectivity, and (3) 𝑘-NNG to PG
transformation aimed at improving graph navigability and enhanc-
ing search performance. Then, we integrate our FGIM framework
with the state-of-the-art ANNS method, HNSW, and other existing
mainstream graph-based methods to demonstrate its generality
and merging efficiency. Extensive experiments on six real-world
datasets show that our FGIM framework is applicable to various
mainstream graph-based ANNS methods, achieves up to 2.95×
speedup over HNSW’s incremental construction and an average
of 7.9× speedup for methods without incremental support, while
maintaining comparable or superior search performance.

PVLDB Reference Format:
Zekai Wu, Jiabao Jin, Peng Cheng, Xiaoyao Zhong, Lei Chen, Zhitao She,
Jingkuan Song, Xiaofeng Cao, Heng Tao Shen, Xuemin Lin. Fast
Graph-based Indexes Merging for Approximate Nearest Neighbor Search.
PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Mingle-2012/pg-fast-merging.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

1 INTRODUCTION
Approximate Nearest Neighbor Search (ANNS) [2, 3] is a fundamen-
tal problem across various fields such as machine learning [11, 41],
information retrieval [39, 48], recommendation systems [12, 29],
vector databases [40], and large language models (LLMs) [4, 13].
Recent deep-learning methods have revolutionized data represen-
tation through embedding images and texts into high-dimensional
vectors that preserve semantic relationships, which are crucial
for similarity-based retrieval and various downstream machine-
learning tasks. ANNS can efficiently retrieve semantically related
data points from large-scale vectorized datasets, thus indispensable
for modern AI applications [4, 23, 26]. Given a vector datasetX and
a query vector 𝑥𝑞 ∈ R𝑑 , ANNS aims to efficiently and effectively
retrieve a vector 𝑥𝑟 from X with the minimum distance to 𝑥𝑞 . Ac-
cording to recent studies [5, 24, 31, 42], graph-based indexes have
emerged as one of the most effective techniques for ANNS due to
their superior search accuracy.

Despite the strong performance of graph-based approaches, their
practical deployment in industrial settings remains challenging.
Real-world systems often operate in dynamic environments, where
both data and device conditions change frequently. For graph-based
methods, merging multiple indexes into a single one is commonly
required in various scenarios, which poses significant challenges.

We first consider a distributed scenario illustrated in Figure 1. To
handle large-scale data efficiently, distributed storage and indexing
systems (e.g., Log-Structured Merge (LSM) trees [32]) have become
increasingly prevalent. In such systems, each node constructs its
index based on locally available data. As the distributed system
evolves, scaling requirements may arise due to cluster consolidation
[18, 25] or resource reallocation [35]. Specifically, computing nodes
within a cluster are often merged to reduce costs and simplify
management, necessitating the merging of existing indexes into
a single one. Since certain methods [14, 16, 33] rely on dataset-
oriented merging operations (i.e., rebuilding the entire index from
scratch) due to their unique construction strategies, this process
incurs substantial computational overhead and limited scalability.

Imagine another cost-effective and high-performance scenario
for real-time industrial applications (e.g., Retrieval-Augmented Gen-
eration (RAG) [4, 23]), where indexing must be online performed
to support continuous and efficient data writes. While Hierarchi-
cal Navigable Small World (HNSW) [28] is widely adopted as a
real-time indexing solution for its incremental insertion capability,
its memory-intensive multi-layer structure motivates complemen-
tary SSD-based solutions (e.g., DiskANN [21]), which trade query

https://doi.org/XX.XX/XXX.XX
https://github.com/Mingle-2012/pg-fast-merging
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Computing Nodes

(On/OFF)

Cluster

Consolidation

Node 1

Node 4

Node 2

Node 3

Node 1

Node 2

Node 3

Node 4

�3

 1

 2

 3

 4

 !1

 !2

"1

"

#3

"1

"

#3

�1

!⃗1
!⃗2
!⃗3

(1.0, 3.0)

(0.0, 0.0)

(3.0, 2.0)

�1

 ⃗1
 ⃗2
 ⃗3

(1.0, 3.0)

(0.0, 0.0)

(3.0, 2.0)

Graph

Indexes

Vector

Dataset
�

(3.5, 0.0)

(5.0, 2.5)

(2.0, 2.0)

�2

 ⃗4
 ⃗5
 ⃗6

(3.5, 0.0)

(5.0, 2.5)

(2.0, 2.0)

�2

 ⃗4
 ⃗5
 ⃗6

(,)

�4

(,)

Merge

Figure 1: An illustration of cluster consolidation.

speed for cost efficiency. An industrial hybrid approach, shown in
Figure 2, typically employs a size-constrained HNSW index (e.g.,
1M~5M vectors) for real-time insertions, with periodic offloading to
DiskANN. However, accumulating DiskANN indexes requires back-
ground reconstruction to preserve search quality, thereby imposing
considerable computational costs. This process is computationally
expensive, making it difficult to be applied in large-scale online sce-
narios.

Challenges. To the best of our knowledge, no existing research
provides an efficient solution for merging graph indexes that meets
the aforementioned requirements of industrial deployment. There-
fore, we aim to develop a practical and effective approach to bridge
this gap. Unlike prior studies [16, 21, 28, 33] on graph-based ANNS
indexes, which primarily focus on the efficient and accurate con-
struction of graph indexes from raw vector datasets, our work
targets the efficient merging of multiple existing graph indexes
into a single one. However, this problem is non-trivial, as two key
challenges must be addressed.
Challenge I: How can the original neighbor relationships be extracted
from existing multiple indexes, facilitating the efficient construction
of the merged graph-based index? An effective merging approach
should be able to extract valuable information (e.g., neighborhood
relationship) from the original indexes, such as neighbor relation-
ships between vertices. The challenge lies in aligning different
ANNS indexing structures, as various methods employ different
graph construction strategies. To ensure structural compatibility,
it is essential to design a unified framework that can map these
heterogeneous index structures onto a commonmerged index struc-
ture.
Challenge II: How can the merged index maintain comparable search
efficiency? The merging process must preserve the structural prop-
erties crucial for efficient ANNS. State-of-the-art graph-based meth-
ods likeHNSW [28] andNSG [16] achieve high performance through
careful edge selection and pruning strategies that optimize the
search path length and thus reduce distance computations. During

DRAM SSD

CPU HNSW Index

ANNS Engine

DiskANN Indexes

Store Store

➊ ➋

➊ Query

➋ Periodically

 Offloading

In-memory

ANNS
SSD-based ANNS

Figure 2: A hybrid engine for ANNS.

index merging, we must ensure the combined graph maintains sim-
ilar connectivity and navigability properties as would be obtained
through direct reconstruction.
Solution and Contributions. We propose a Fast Graph-based
Indexes Merging (FGIM) framework, an efficient framework for
merging graph-based indexes to achieve effective ANNS. Our core
idea is to reformulate the indexmerging problem as a graphmerging
problem by mapping disconnected graph-based indexes onto a uni-
fied graph structure and optimizing it for ANNS tasks. Specifically,
it consists of three core components: PGs to 𝑘-NNG transformation,
𝑘-NNG refinement, and 𝑘-NNG to PG transformation. First, the PGs
to 𝑘-NNG transformation extracts enough potential candidate neigh-
bors from the original graph-based indexes through cross-querying
and top-𝑘 selection. Next, we propose a streamlined 𝑘-NNG refine-
ment method that incorporates an indegree-aware mechanism to
enhance graph connectivity, iteratively improving the quality of
candidate neighbors while preserving graph connectivity. Third,
in the 𝑘-NNG to PG Transformation phase, we apply the neighbor
selection and graph optimization process, both designed to improve
search performance and graph navigability. Finally, we propose a
merging strategy tailored for merging the state-of-the-art HNSW
[28] to facilitate the merging of hierarchical structures effectively.
The FGIM framework produces a merged graph-based index that
is well-optimized for ANNS tasks, ensuring both efficiency and
effectiveness. To summarize, we make the following contributions:

• We formulate the graph-based index merging problem in §2.1,
which aims to merge multiple graph-based indexes into a single
one for effective ANNS.

• We propose a universal framework FGIM for merging graph-
based indexes in §3, designed to be compatible with a wide range
of mainstream graph-based ANNS methods.

• We present the implementation details of our proposed frame-
work in §4, including the PGs to 𝑘-NNG transformation, 𝑘-NNG
refinement, and 𝑘-NNG to PG transformation.

• We integrate our FGIM framework with the state-of-the-art
HNSW method. To achieve this, we propose a HNSW-Adaptive
Merging Strategy in §5.

• Extensive experiments on real datasets show the efficiency and
applicability of our proposed framework in §6.

2

Table 1: Symbols and Descriptions

Symbol Description

X the base dataset
𝐺 (𝑉 , 𝐸) the graph index with vertex set𝑉 and edge set 𝐸
𝛿 (·, ·) the distance function
𝑥, 𝑥𝑏 , 𝑥𝑞 a normal, base, and query vector
| · | the cardinality of a set
𝐿 the candidate pool size in search
𝑚 the maximum degree of the graph
𝐶𝑖 (𝑢) the candidate neighbor set of vertex𝑢 in𝐺𝑖 .
𝑁𝑖 (𝑣), 𝑁 𝑖 (𝑣) the neighbors and reverse neighbors of vertex 𝑣 in graph𝐺𝑖

2 PRELIMINARIES
We show problem definitions in §2.1 and discuss the current studies
in §??. Table 1 lists the frequently used notations in this paper.

2.1 Problem Definition
2.1.1 ANNS Definition. Let 𝑑 ∈ N be the dimension of the vector,
𝑛 ∈ N be the number of vectors in the dataset. The dataset is given
by X = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ⊂ R𝑑 . Let 𝛿 (𝑎, 𝑏) : R𝑑 × R𝑑 → R denote
the distance function that computes the distance between any two
vectors 𝑥𝑎 and 𝑥𝑏 in X in a specific metric space (e.g., ℓ2). The task
of 𝑘-Nearest Neighbor Search (𝑘-NNS) is defined as follows:

Definition 1. 𝑘-Nearest Neighbor Search (𝑘-NNS). Given a finite
datasetX and a query vector 𝑥𝑞 ∈ R𝑑 , and a parameter 𝑘 ≤ 𝑛, 𝑘-NNS
retrieve the set R consisting of the 𝑘 vectors from X that have the
minimum distance to 𝑥𝑞 based on 𝛿 . For ∀𝑥𝑟 ∈ R and ∀𝑥𝑠 ∈ X\𝑅, we
have 𝛿 (𝑥𝑞, 𝑥𝑟) ≤ 𝛿 (𝑥𝑞, 𝑥𝑠). R can be formally described as follows:

R = arg min
| R |=𝑘,R⊂X

∑︂
𝑥∈R

𝛿 (𝑞, 𝑥) (1)

In modern applications, the increasing size of datasets and the
high dimensionality of vector representations significantly amplify
the computational cost of exact 𝑘-NNS, making it impractical due to
the curse of dimensionality [20]. To mitigate this, ANNS techniques
construct optimized indexes that balance the trade-offs between
search efficiency and result accuracy.

Definition 2. 𝑘-ANNS. Given a finite dataset X and a query vector
𝑥𝑞 ∈ R𝑑 , ANNS constructs an Index 𝐼 on X. It then gets a subset 𝐶 of
X by 𝐼 , and evaluates 𝛿 (𝑥𝑖 , 𝑥𝑞) to obtain the approximate 𝑘 nearest
neighbors R̃ of 𝑞, where 𝑥𝑖 ∈ 𝐶 .

The top-𝑘 recall rate (𝑅𝑒𝑐𝑎𝑙𝑙@𝑘) is commonly used to evaluate
ANNS performance. Given a query 𝑥𝑞 and a value 𝑘 ≤ 𝑛, the recall
rate is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
|R ∩ R̃ |
|𝑘 | (2)

Algorithm 1 details a general search process of ANNS. Specif-
ically, the algorithm maintains a candidate set 𝐶 with beam size
𝐿(≥ 𝑘) to record the currently best 𝐿 nearest neighbors of the query
𝑥𝑞 . The algorithm adds the enterpoint 𝑒𝑝 to the candidate set as the
initialization of the candidate set (Line 1). The algorithm extracts
the nearest neighbor from the candidate set at the beginning of
each iteration (Lines 2-4), and then expands the selected vertex 𝑢
by inserting all unvisited vertices 𝑣 ∈ 𝑁 (𝑢) into the candidate set
(Lines 4-5). If the size of the candidate set exceeds 𝐿, the algorithm

Algorithm 1: KNNSearch(𝑞, 𝐺 , 𝐿, 𝑘 , 𝑒𝑝)
Input: query vector 𝑥𝑞 , graph index 𝐺 = (𝑉 , 𝐸), pool size 𝐿,

𝑘 for top-𝑘 , optional enterpoint 𝑒𝑝
Output: 𝑘 nearest neighbors of 𝑥𝑞

1 initialize 𝐶 ← {(𝑒𝑝, 𝛿 (𝑒𝑝, 𝑞))} and 𝑖 ← 0
2 while 𝑖 < 𝐿 do
3 𝑢 ← 𝐶 [𝑖]
4 mark 𝑢 as visited
5 foreach 𝑣 ∈ 𝑁 (𝑢) and 𝑣 is not visited do
6 insert(𝑣, 𝛿 (𝑣, 𝑞)) into 𝐶
7 sort 𝐶 by 𝛿 (𝑞, 𝑥) and keep the top-𝐿 results
8 𝑖 ← index of the first unexpanded vertex in 𝐶
9 return the first 𝑘 results in 𝐶

keeps the top-𝐿 nearest neighbors in the candidate set and removes
the rest (Lines 7). Afterward, the algorithm selects the next vertex
to expand by discovering the first unvisited vertex in the candidate
set at the end of each iteration (Line 8). The algorithm terminates
when no unvisited vertex can be found in the 𝐶 . Finally, the algo-
rithm returns the top-𝑘 nearest neighbors in the candidate set as
the search results (Line 9).

2.1.2 Graph-based Indexes. Graph-based methods are reported to
achieve superior search performance in ANNS tasks [42]. These
methods map base vectors into a graph space, constructing a prox-
imity graph (PG) to represent the similarity relationships between
base vectors.

Definition 3. Proximity Graph (PG). The PG of X is a graph
𝐺 = (𝑉 , 𝐸) with the vertex set 𝑉 and edge set 𝐸. Each vertex 𝑣𝑖 ∈
𝑉 corresponds to a vector 𝑥𝑖 ∈ X. Each edge 𝑒𝑖 𝑗 ∈ 𝐸 represents
the proximity between vertices 𝑣𝑖 and 𝑣 𝑗 , which is determined by a
specified distance metric (e.g., ℓ2). The neighbors of a vertex 𝑣 in 𝑉
are denoted as 𝑁 (𝑣).

State-of-the-art graph-based methods employ various strate-
gies for PG construction, including search-based approaches (e.g.,
HNSW [28] and Vamana [21]) and refinement-based techniques
(e.g., NSG [16] and 𝜏-MNG [33]). Specifically, the construction pro-
cess typically involves obtaining a subset of vertices as candidate
neighbor set 𝐶 for each vertex (referred to as Candidate Neighbor
Acquisition (CNA) in the literature [42, 44]), which can be achieved
through search or other heuristics, and then applying a pruning
strategy to select the final neighbors from 𝐶 (referred to as Neigh-
bor Selection (NS)). A critical distinction among these methods lies
in their pruning strategies, which play a crucial role in shaping
the structural properties of the graph and directly influence ANNS
performance [42]. While some methods (e.g., HNSW) incorporate
Relative Neighborhood Graph (RNG) pruning [38], others (e.g.,
NSG and Vamana) apply Monotonic Relative Neighborhood Graph
(MRNG) pruning [16], leading to structural variations that affect
efficiency and accuracy in ANNS tasks.

PGs have become a focal point in recent ANNS studies [24, 42, 44]
due to their ability to effectively capture the local neighborhood
structure of high-dimensional data, facilitating efficient and ac-
curate search operations. By representing data points as vertices

3

and establishing edges between nearby points based on a distance
metric, PGs preserve essential proximity relationships. Their funda-
mental properties, such as sparsity, which reduces computational
complexity, and connectivity, which ensures navigability, enable
efficient graph traversal while minimizing distance computations.
These characteristics make PGs effective for balancing speed and
accuracy in large-scale retrieval tasks.

Given all the preliminaries, we formally define the problem of
merging graph-based indexes for effective ANNS.
Problem: Let {𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖)}ℎ𝑖=1 be ℎ graph-based indexes, where
each graph𝐺𝑖 is constructed from a datasetX𝑖 using the same distance
metric 𝛿 and the same indexing method 𝑀 (e.g., HNSW, Vamana).
Each dataset X𝑖 consists of 𝑛𝑖 vectors, all of the same dimensionality
𝑑 . Our goal is to obtain a new merged graph-based index 𝐺̂ = (𝑉 , 𝐸),
satisfying the following properties:
◦ the vertex set is the union of all individual graph vertex sets 𝑉 =⋃︁ℎ

𝑖=1𝑉𝑖 , and the number of vertices in 𝐺̂ is 𝑛 =
∑︁ℎ
𝑖=1 𝑛𝑖 .

◦ the edge set 𝐸 is constructed based on neighborhood relationships
between the vertices in 𝑉 .
◦ the merged graph 𝐺̂ should be constructed time-efficiently, signif-
icantly faster than the time required to reconstruct the index from
scratch.
◦ the merged graph 𝐺̂ should be able to support efficient ANNS tasks,
ensuring that the search performance is comparable to that of the
index reconstructed from scratch.

2.2 Current Studies
Apart from the brute-force reconstruction method, existing relevant
studies can be summarized into the following three categories.
Incremental Indexing. Incremental insertion is a viable approach
for merging indexes, where vectors from smaller datasets are se-
quentially inserted into the index of a larger dataset. Search-based
construction methods like HNSW [28] inherently support this
through point-by-point insertion. Nevertheless, thismethod presents
noticeable limitations. First, it assumes that the underlying graph
index supports incremental insertions, a property not inherently
guaranteed in many graph-based methods (e.g., NSG [16] and Va-
mana [21]). Additionally, it relies exclusively on the base index
during merging, neglecting the indexing information from other
indexes, which limits its ability to fully leverage their potential
contributions to the final merged index.
𝑘-NNG Merge. Zhao et al. [47] proposes a method for merging two
𝑘 nearest neighbor graphs (𝑘-NNGs), which first introduces ran-
dom edges between the two disjoint 𝑘-NNGs, followed by applying
NNDescent [14] as refinement. However, since this method is de-
signed specifically for merging two 𝑘-NNGs, it is neither suitable
for efficient ANNS tasks, according to recent studies [24, 42], nor
compatible with mainstream graph-based indexing methods (e.g.,
HNSW [28], Vamana [21] and NSG [16]), which do not produce
𝑘-NNGs as their final index structures.
DiskANN. DiskANN [21] proposes a scalable index merging strat-
egy to handle billion-scale datasets across different shards, which
partitions data into overlapping clusters via 𝑘-means and constructs
independent subgraphs for each cluster. However, the connections
between subgraphs are not truly established, leading to a strong

Sift1M Gist1M
Datasets

55.26%

5.18%

39.56%

54.16%

8.00%

37.84%

Existing
New(Local)
New(Cross)

(a) HNSW

Sift1M Gist1M
Datasets

30.63%

24.05%

45.32%

21.56%

29.00%

49.44%

Existing
New(Local)
New(Cross)

(b) Vamana

Figure 3: The neighbor composition of HNSW and Vamana.

dependency on the choice of clustering parameters, which signifi-
cantly impact search performance. Moreover, its reliance on clus-
tered data preprocessing makes it inapplicable to arbitrary graph
indexes in practice.

Overall, the aforementioned methods exhibit limitations
in terms of universality, efficiency, and effectiveness. These
limitations highlight the substantial potential to design a novel
merging method that can effectively leverage the strengths of ex-
isting graph-based indexes while addressing the challenges of effi-
ciency and search performance.

3 FASTGRAPH-BASED INDEXESMERGINGFRAME-
WORK

We propose a general framework for merging graph-based ANNS
indexes. We first introduce the motivation behind our solution in
§3.1. Then, we describe the pipeline of our framework in §3.2.

3.1 Motivation
The primary reason why existing methods are incompetent in merg-
ing graph-based indexes is that they do not fully utilize the informa-
tion (i.e., the neighborhood relationship) from the existing graph-
based indexes. Intuitively, connected vertices in the original indexes
are likely to remain neighbors in the merged index. Even when
certain neighbors cannot be retained as direct connections in the
new graph due to out-degree constraints, where they are replaced
by closer vertices, they still provide valuable proximity information.
This aligns with the fundamental principle in graph-based ANNS
that a neighbor of a neighbor may also be a neighbor [14, 24, 42],
which can be exploited to enhance the effectiveness of the merging
process.

To evaluate the significance of the information embedded in
existing graph indexes, we partition the dataset into two subsets
and construct separate indexes for each. We then apply the same
indexing method to the entire dataset and examine whether a ver-
tex’s neighbors in the subgraphs are also present in its neighbor list
in the full graph. As illustrated in Figure 3, a substantial proportion
of neighbors in the full graph overlap with those in the subgraphs,
with HNSW exhibiting a particularly high degree of overlap. Most
new neighbors in the full graph originate from the other subgraph,
while new connections within the same subgraph remain sparse.
These results suggest that an effective merging strategy should
preserve original neighborhood structures while establishing mean-
ingful cross-graph connections.

4

�1(1,!1)

In
p

u
t G

ra
p

h
-b

a
sed

 In
d

ex
es

PG to k-NNG (Sec-IV.1)

�1

Cross Querying

�2

Entry vertex

Candidate neighbors

Query vertex

Visited vertices

�1

�2

Adjacency List

G�G�

k-NNG Refinement (Sec-IV.2) k-NNG to PG (Sec-IV.3)

G�

R
ea

d
y
 fo

r effectiv
e A

N
N

S

Prune

Connect

G�

G�

 2(!2,"2)

∈ !1 # ∈ !2

% 1
&'

&*

&+

&,

&-

&* &+ &- .'

&+ &/ .* .0

&* .' .- ./

&* &+ &- ./

&/ &' ., .'

% 1
&'

&*

&+

&,

&-

&* &+ &- .'

&+ &/ .* .0

&* .' .- ./

&* &+ &- ./

&/ &' ., .'

% 2
.'

.*

.+

.,

.-

., &- &+ &'

.' .+ .- &*

.* ., .-

.* .+ &, &0

., .+

&*

&0.'

% 2
.'

.*

.+

.,

.-

., &- &+ &'

.' .+ .- &*

.* ., .-

.* .+ &, &0

., .+

&*

&0.'

Indegree-Aware

Iterative Update

Figure 4: A pipeline of our FGIM framework with two graph-based indexes.

Another key challenge in index merging is the structural het-
erogeneity, which arises when directly merging PGs with differing
degree distributions (e.g., HNSW [28] constructs a multi-layered
graph with varying vertex degrees). To address this, we employ
a 𝑘-NNG as a standardized intermediate representation, ensuring
consistency in neighborhood structure across multiple PGs while
preserving essential neighbor relationships from the original graph
indexes. In summary, our approach preserves the existing neigh-
borhood relationships from existing indexes and leverages this
information to establish effective cross-graph connections, thereby
pre-constructing a 𝑘-NNG that encodes the original graph struc-
tural information as the initial solution for merging.

3.2 Pipeline of the Framework
Figure 4 illustrates the pipeline of the FGIM framework that con-
tains threemain steps: PGs to𝑘-NNG,𝑘-NNG Refinement and𝑘-NNG
to PG. The 𝑘-NNG to PG transformation plays a crucial role in the
merging process, which forms the CNA results from the existing
graph-based indexes. All CNA results are then regarded as input
of the 𝑘-NNG Refinement step to obtain more accurate candidate
neighbors. Finally, the 𝑘-NNG to PG transformation optimizes the
merged graph-based index to improve search performance and
graph connectivity.

PGs to 𝑘-NNG transformation (§4.1). The transformation from
PGs to 𝑘-NNG consists of two steps: cross-querying and top-𝑘 se-
lection. Given a set of PG G = {𝐺1,𝐺2, . . . ,𝐺ℎ}, it first generates
candidate neighbor set 𝐶𝑖 (𝑢) for each vertex 𝑣 in 𝐺𝑖 , by extracting
neighborhood relationship from the existing graph-based indexes.
Then, the top-𝑘 nearest neighbors from 𝐶𝑖 (𝑢) are selected to form
the CNA results. As a result, each vertex obtains 𝑘 candidate neigh-
bors. From a macroscopic perspective (i.e., the entire graph), this
process can be viewed as a transformation from the existing PGs
to an interconnected 𝑘-NNG. In this context, the 𝑘-NNG serves as
a bridge between the original graph-based indexes and the final
merged graph-based index, acting as an intermediate representation
that facilitates the merging process.

𝑘-NNG Refinement (§4.2). 𝑘-NNG refinement aims to refine the
candidate neighbor set by identifying high-quality neighbors that
may have been previously overlooked during the PGs to 𝑘-NNG
transformation while eliminating redundant connections to ensure
that each vertex retains exactly 𝑘 neighbors. Specifically, we apply
a fast refinement method to discover neighbors, which iteratively
updates the neighbors of each vertex based on the current candidate
neighbor set. Moreover, to maintain graph connectivity, a connec-
tivity repair mechanism is integrated into the refinement process,
ensuring the reachability of all vertices in the merged graph-based
index.

𝑘-NNG to PG transformation (§4.3). Finally, we take above re-
fined 𝑘-NNG as input to optimize the merged graph-based index
with a NS process. Specifically, candidate neighbors are carefully
selected to further improve the search performance while minimiz-
ing the negative impact on graph navigability, thus facilitating the
graph-based ANNS. It is worth mentioning that different pruning
strategies (e.g., RNG [38], MRNG [16] and 𝜏-MNG [33]) can be ap-
plied to our method, depending on the specific requirements for
the merged graph-based index.

4 COMPONENTS OF THE FGIM FRAMEWORK

4.1 PGs to 𝑘-NNG Transformation
4.1.1 Candidate Neighbor Acquisition. We first identify the candi-
date neighbors from the existing graph-based indexes. To be formal,
we denote the candidate neighbor set of vertex 𝑢 in 𝐺𝑖 as 𝐶𝑖 (𝑢).
Since we have a set of graph-based indexes {𝐺1,𝐺2, . . . ,𝐺ℎ} with
𝑛1, 𝑛2, . . . , 𝑛ℎ vertices, two types of candidate neighbors can be ob-
tained: the local candidate neighbors 𝐶+

𝑖
(𝑢) from the original graph

𝐺𝑖 and the cross candidate neighbors 𝐶−
𝑖
(𝑢) from the other graphs

𝐺 𝑗 (𝑗 ≠ 𝑖).
Definition 4. Local Candidate Neighbors. Given a vertex𝑢 in𝐺𝑖

in a set of graph-based indexes {𝐺1,𝐺2, . . . ,𝐺ℎ}, the local candidate
neighbors are defined as:

𝐶+𝑖 (𝑢) = {𝑣 ∈ 𝑉𝑖 | (𝑢, 𝑣) ∈ 𝐸𝑖 } (3)
5

�1

 ⃗1

 ⃗2

 ⃗3

 ⃗5

 ⃗6

 ⃗4

 ⃗1

 ⃗2

 ⃗3

 ⃗5

 ⃗6

 ⃗4

 ⃗1

 ⃗2

 ⃗3

 ⃗5

 ⃗6

 ⃗4
�2

� (! = 2)

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

�1

�2

Two PG Indexes

to be Merged

Cross Querying

Connect Cross-Graph Node

Form the

pre-merged k-NNG

� (! = 2)

Iterative Refine

� (! = 2)

Repair no

Indegree Nodes

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

(a) (b) (c)

Neighboring Nodes Query Enterpoints Current Vertex

(e) (f)

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

try connecting

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

Figure 5: An example of PGs to 𝑘-NNG transformation.

where 𝑉𝑖 and 𝐸𝑖 are the vertex set and edge set of 𝐺𝑖 , respectively.

To obtain local candidate neighbors, we retrieve the neighbors
of vertex 𝑢 directly from 𝐺𝑖 . For the cross candidate neighbors,
our idea is simplistic and straightforward: now that we have the
indexes, we can directly query the other indexes to obtain the candi-
date neighbors. This process, referred to as cross-querying, involves
treating each vertex 𝑢 in 𝐺𝑖 as a query point 𝑥𝑢 and performing
KNNSearch in the remaining indexes {𝐺1,𝐺2, . . . ,𝐺ℎ}\𝐺𝑖 to acquire
the cross candidate neighbors.

Definition 5. Cross Candidate Neighbors. Given a vertex 𝑢

in 𝐺𝑖 in a set of graph-based indexes {𝐺1,𝐺2, . . . ,𝐺ℎ} with en-
terpoints {𝑒𝑝1, 𝑒𝑝2, . . . , 𝑒𝑝ℎ}, and a search pool size 𝐿, the cross
candidate neighbors are obtained by querying the other indexes
{𝐺1,𝐺2, . . . ,𝐺ℎ} \𝐺𝑖 :

𝐶−𝑖 (𝑢) =
⋃︂
𝑗≠𝑖

KNNSearch(𝑥𝑢 ,𝐺 𝑗 , 𝐿, 𝐿, 𝑒𝑝 𝑗) (4)

We illustrate this process in Figure 5, where two PGs 𝐺1 and 𝐺2
are constructed from two datasets X1 and X2 shown in Figure 1,
respectively. The cross-querying technique acquires candidate neigh-
bors from the other PG. For example, starting from 𝑥1 in 𝐺1, we
choose 𝑥5 as the enterpoint in 𝐺2. Following the search path, the
candidate neighbor obtained from 𝐺2 is 𝑥6, thereby establishing
a cross-graph connection between 𝑥1 and 𝑥6. This process is re-
peated for all vertices in 𝐺1 and 𝐺2, resulting in a set of candidate
neighbors for each vertex.

However, searching for the candidate neighbors in the other
indexes is computationally expensive. For instance, the search cost
of HNSW is 𝑂 (𝐿𝑑 log𝑛) [42], where 𝑑 is the dimensionality of the
dataset, 𝑛 is the number of vertices in the index and 𝐿 is the size of
the search pool. Given ℎ indexes, the total cost of the cross-querying
technique is 𝑂 (𝐿𝑑∑︁ℎ

𝑖=1 𝑛𝑖
∑︁

𝑗≠𝑖 log𝑛 𝑗), since vertices do not need
to query their own index, which is computationally expensive. To
address this issue, we aim to minimize search time while ensuring
feasibility, enabling the rapid acquisition of neighborhood relation-
ship. Based on these premises, we provide Theorem 4.1 to show the
minimum number of candidate neighbors required to ensure the
feasibility of the merging process.

Theorem 4.1. (Minimum Candidate Set Strategy for Merging)
Let G = {𝐺1, . . . ,𝐺𝑛} be a set of PGs, and let 𝐶+

𝑖
(𝑢) and 𝐶−

𝑖
(𝑢)

denote the local and cross candidate neighbor sets for a vertex 𝑢 in𝐺𝑖 .

To guarantee that the merged candidate set 𝐶+
𝑖
(𝑢) ∪𝐶−

𝑖
(𝑢) contains

at least 𝑘 neighbors for all 𝑢, the minimum required cross candidate

set size 𝐿 must satisfy: 𝐿 ≥
⌈︂
𝑘−min𝑖 |𝐶+𝑖 (𝑢) |

| G |−1

⌉︂
. In the worst case, this

simplifies to 𝐿 ≥ ⌈ 𝑘
| G |−1 ⌉.

Proof Sketch. For each 𝑢, the cross candidate sets must com-
pensate for any deficit in local candidates: |𝐶−

𝑖
(𝑢) | ≥ 𝑘 − |𝐶+

𝑖
(𝑢) |.

Since cross candidates are aggregated from |G|−1 other graphs, the
per-graph contribution must satisfy 𝐿 ≥ 𝑘−|𝐶+𝑖 (𝑢) |

| G |−1 . The worst-case
bound follows when local candidates are empty. □

With the Minimum Candidate Set strategy, we can efficiently
acquire candidate neighbors from the other indexes while ensuring
feasibility. Although the quality of the obtained candidate neighbors
may vary, the established cross-graph connections act as pivotal
links for subsequent neighbor refinement. We will demonstrate
how these initial candidates can be systematically optimized in
§4.2. Finally, we obtain the candidate neighbor set of vertex 𝑢 in
𝐺𝑖 by combining the local and cross candidate neighbors 𝐶𝑖 (𝑢) =
𝐶+
𝑖
(𝑢) ∪𝐶−

𝑖
(𝑢).

4.1.2 Top-𝑘 Selection. Top-𝑘 selection is performed to obtain the
final candidate neighbor set for each vertex. Given a predefined
parameter 𝑘 representing the maximum out-degree of the merged
graph, two parts of candidate neighbors are combined. Any excess
candidate neighbors are then truncated based on their distances to
the vertex 𝑢, sorted in ascending order.

Algorithm 2 presents the detailed process of the PGs to 𝑘-NNG
transformation. First, we initialize the algorithm and calculate the
size of the search candidate set 𝐿 based on minimum cost querying
strategy (Lines 1-2). For each vertex 𝑢 in each PG𝐺𝑖 , the algorithm
acquires local candidate neighbors from its own PG and cross candi-
date neighbors from the other PGs (Lines 3-7). Then, the algorithm
selects the top-𝑘 results from the combined candidate neighbors
and assigns them to the vertex 𝑢 in the merged 𝑘-NNG 𝐺 (Lines
8-10).

4.2 𝑘-NNG Refinement
After PGs to 𝑘-NNG transformation, the candidate neighbors are
retrieved from the existing graph-based indexes. However, the pro-
posed minimum candidate set strategy causes a critical challenge,
that is: the strategy may lead to the cross query process easily fall

6

Algorithm 2: PGs to 𝑘-NNG Transformation
Input: set of the graph-based indexes G = {𝐺1,𝐺2, . . . ,𝐺𝑛},

maximum out-degree constraint 𝑘
Output: 𝑘-NNG 𝐺

1 Initialize the graph 𝐺 ← ∅, candidate set 𝐶 ← ∅
2 𝐿← 𝑘

| G |−1
3 foreach 𝐺𝑖 ∈ G do
4 foreach ∀𝑢 ∈ 𝑉𝑖 do
5 𝐶 ← {𝑣 ∈ 𝑉𝑖 | (𝑢, 𝑣) ∈ 𝐸𝑖 }
6 foreach 𝐺 𝑗 ∈ G \𝐺𝑖 do
7 𝐶 ← 𝐶 ∪ KNNSearch(𝑥𝑢 ,𝐺 𝑗 , 𝐿, 𝐿, 𝑒𝑝 𝑗)
8 sort 𝐶 in ascending order of the distance to 𝑥𝑢
9 resize 𝐶 to 𝑘

10 𝑁 (𝑢) ← 𝐶

11 return 𝐺

into a local optimum, resulting in low-quality cross candidate neigh-
bors in an inaccurate 𝑘-NNG. To address this issue, we propose
an Indegree-Aware 𝑘-NNG Refinement approach to improve the
quality of the merged graph-based index by iteratively refining the
obtained 𝑘-NNG with the proposed streamlined refinement process
while improving the graph connectivity via an indegree augmenta-
tion technique.

4.2.1 Streamlined Refinement. We refine the 𝑘-NNG through iter-
ative NNDescent method [14]. In each iteration, the entire graph
undergoes both sampling and update processes, where sampling
refers to the process of acquiring neighbors for each vertex 𝑢 in the
graph, and update refers to the process of updating the neighbor
set 𝑁 (𝑢) for each vertex 𝑢 based on the sampled neighbors. The
complete algorithm of sample and update is provided in Appendix A
of our technical report [45].

We observed that the results of update in each iteration directly
affect the subsequent sampling. Notably, NNDescent performs batch
sampling on the entire graph first, followed by another round of
batch updates. To improve efficiency, we introduce a streamlined
refinement approach, enabling sampling and update to be conducted
simultaneously for each vertex. Specifically, we adopt an update-
before-sample strategy. Given a 𝑘-NNG 𝐺 , we initialize four aux-
iliary graphs to track samples: 𝐺new and 𝐺old store the new and
old neighbors of each vertex, while 𝐺new and 𝐺old record their
corresponding reverse neighbors (Line 1 in Algorithm 3), following
the original method. For each vertex 𝑣 ∈ 𝑉 , the first iteration’s up-
date operation is based on the initial set of all neighbors in 𝑁𝐺 (𝑣)
(Lines 2-3). After completing the update process for 𝑣 , its neighbors
𝑁𝐺 (𝑣) are immediately sampled and added to the corresponding
graph records (Lines 6-10). As each vertex is processed, the over-
all graph quality continuously improves, leading to progressively
better sampling for subsequent vertices. With this approach, the
𝑘-NNG achieves faster convergence during the refinement process.

Figure 2(e) illustrates the 𝑘-NNG refinement. In this example, 𝑥6
is connected as the cross-graph neighbor of 𝑥1 in the pre-merged
𝑘-NNG, and subsequently serves as a pivot to facilitate connections
among its neighbors by enabling them to recognize and establish

Algorithm 3: 𝑘-NNG Refinement
Input: 𝑘-NNG 𝐺 , maximum iteration 𝐼𝑚𝑎𝑥

Output: Refined 𝑘-NNG 𝐺

1 Initialize the graph 𝐺new, 𝐺old, 𝐺new, 𝐺old← ∅
2 foreach 𝑢 ∈ 𝑉 do
3 Insert ∀𝑣 ∈ 𝑁 (𝑢) into 𝐺new [𝑢]
4 repeat
5 foreach 𝑢 ∈ 𝑉 do
6 merge 𝐺new [𝑢] into 𝐺new [𝑢], 𝐺old [𝑢] into 𝐺old [𝑢]
7 clear 𝐺new [𝑢], 𝐺old [𝑢]
8 perform Update for 𝑢
9 clear 𝐺new [𝑢], 𝐺old [𝑢]

10 perform Sample for 𝑢
11 𝐺 ← RepairIndegree(𝐺)
12 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
13 until 𝑖𝑡𝑒𝑟 = 𝐼𝑚𝑎𝑥

14 return 𝐺

Algorithm 4: RepairIndegree(𝐺)
Input: 𝑘-NNG 𝐺

Output: Repaired 𝑘-NNG 𝐺

1 T ← calculate in-degrees for ∀𝑢 ∈ 𝑉
2 foreach ∀𝑣∗ ∈ 𝑉 where T (𝑣∗) = 0 do
3 repeat
4 𝑣 ← the closest unvisited neighbor in 𝑁 (𝑣∗)
5 foreach ∀𝑣 ′ ∈ 𝑁 (𝑣) in descending order of the

distance to 𝑥𝑣 do
6 if 𝑣 ′ is not replaced and T (𝑣 ′) > 1 then
7 Replace 𝑣 ′ with 𝑣∗ in 𝑁 (𝑣)
8 Mark 𝑣∗ in 𝑁 (𝑣) as replaced
9 T (𝑣 ′) ← T (𝑣 ′) − 1

10 T (𝑣∗) ← T (𝑣∗) + 1
11 break

12 until T (𝑣∗) > 0 or all neighbors in 𝑁 (𝑣∗) are visited
13 return 𝐺

direct links (e.g., linking 𝑥3 and 𝑥4). Since distant neighbors are
replaced by closer neighbors, the quality of the candidate neighbors
is improved.

4.2.2 Indegree Augmentation. Before augmenting, many vertices
in 𝐺 may have no in-edge, denoted as 𝑣∗. Given a 𝑘-NNG 𝐺 (𝑉 , 𝐸),
this technique is designed to enhance the graph connectivity by
linking disconnected vertices in𝐺 . Specifically, we try to connect
each vertex 𝑣∗ to its nearest neighbor 𝑣 ∈ 𝑁 (𝑣∗). To ensure that
other vertices with low in-degrees are not adversely affected, we
traverse the neighbors of 𝑣 to identify replaceable vertices that have
not yet been replaced (i.e., not marked as replaced) and have an
in-degree greater than 1 (Line 6 in Algorithm 4). If 𝑣 ′ in 𝑁 (𝑣) meets
these conditions, we replace 𝑣 ′ with 𝑣∗ in 𝑁 (𝑣), and mark 𝑣∗ as
replaced in 𝑁 (𝑣) (Lines 7-11). Otherwise, we continue to visit the

7

Algorithm 5: 𝑘-NNG to PG Transformation
Input: 𝑘-NNG 𝐺 , Indegree recorder T , maximum

out-degree constraint 𝑘
Output:Merged graph 𝐺̂

1 Initialize the graph 𝐺̂ (𝑉 ′, 𝐸′) ← ∅
2 foreach ∀𝑢 ∈ 𝑉 do
3 R ← ∅
4 foreach ∀𝑣 ∈ 𝑁 (𝑢) in ascending order of 𝛿 (𝑢, 𝑣) do
5 if T (𝑣) = 1 or ∀𝑤 ∈ R, 𝛿 (𝑢, 𝑣) < 𝛿 (𝑤, 𝑣) then
6 R ← R ∪ {𝑣}
7 break if |R | = 𝑘

8 𝑁̂ (𝑢) ← R
9 foreach ∀𝑢 ∈ 𝑉 ′ do
10 𝑁̂ (𝑢) ← 𝑁̂ (𝑢) ∪ {𝑣 ∈ 𝑉 ′ | (𝑣,𝑢) ∈ 𝐸′}
11 sort 𝑁̂ (𝑢) in ascending order of the distance to 𝑥𝑢
12 resize 𝑁̂ (𝑢) to 𝑘
13 return 𝐺̂

next closest neighbor 𝑣 ∈ 𝑁 (𝑣∗), following the ascending order of
distance to 𝑥𝑣∗ , until no neighbors are left.

4.3 𝑘-NNG to PG Transformation
Despite the refined 𝑘-NNG is already of high quality, it still falls
short of performing ANNS tasks with both precision and efficiency
because of weak navigability and longer search paths [24, 42], com-
pared to state-of-the-art graph-based ANNS methods [16, 21, 28].
To bridge this gap, we propose a process to transform 𝑘-NNG back
into PG, which consists of two main steps: 1) neighbor selection and
2) connectivity enhancement. Algorithm 5 shows the process of the
𝑘-NNG to PG transformation.

4.3.1 Neighbor Selection. Given a 𝑘-NNG𝐺 , we perform neighbor
selection for each vertex 𝑢 ∈ 𝑉 . Specifically, for each vertex 𝑢, we
sort the neighbors in 𝑁𝐺 (𝑢) in ascending order of the distance
to 𝑥𝑢 , followed by acquiring up to 𝑘 neighbors (Lines 2-8). The
fundamental principle of this procedure is that a neighbor qualifies
as a candidate neighbor if it is closer to 𝑢 than to any other existing
neighbors in the current candidate neighbor set. This approach is
effective across commonly used distance metrics, such as ℓ2 and
cosine similarity, and can be extended to other metrics, including
Maximum Inner Product Search (MIPS), by leveraging established
transformations into ℓ2 space, as demonstrated in recent studies [10].
To prevent any point in the graph from becoming unreachable, we
enforce a constraint ensuring that pruned edges do not correspond
to the only incoming connections of those points (Line 5).

This selection procedure removes distant neighbors that have
closer alternatives in the graph space, establishing a sparser graph
that enhances efficiency in ANNS tasks. Furthermore, the frame-
work supports the integration of alternative pruning strategies (e.g.,
MRNG [16] and 𝜏-MNG [33]), allowing for flexibility in the choice
of pruning methods.

Refined k-NNG Neighbor Selection

� (! = 2)

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

"⃗1

"⃗2

"⃗3

"⃗5

"⃗6

"⃗4

Connectivity Enhancement

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

�⃗1

�⃗2

�⃗3

�⃗5

�⃗6

�⃗4

!" !"

(c)(a) (b)

Figure 6: An example of 𝑘-NNG to PG transformation.
4.3.2 Connectivity Enhancement. To further improve the graph
connectivity and avoid the degree budget waste, we conduct con-
nectivity enhancement for the pruned graph 𝐺̂ . This process entails
combining the reverse edges for each vertex 𝑢 ∈ 𝑉 , which is based
on the principle that people who value you highly are likely the ones
you should value in return. Specifically, we add reverse neighbors
into neighbor set 𝑁

𝐺̂
(𝑢) for each vertex 𝑢, and then sort the neigh-

bors in 𝑁
𝐺̂
(𝑢) in ascending order of the distance to 𝑥𝑢 (Lines 8-10).

Finally, the neighbor set 𝑁
𝐺̂
(𝑢) is strictly truncated to 𝑘 neigh-

bors to avoid hubness (i.e., excessive out-degree) issues (Line 12).
Notably, these additional edges facilitate query routing between
distant vertices, thereby improving the graph’s navigability for
ANNS tasks.

As illustrated in Figure 6, the neighbor selection technique ac-
quires candidate neighbors for each vertex based on a specific prun-
ing strategy. For instance, in the candidate neighbor set of 𝑥2, we
remove 𝑥1 since 𝑥2 is already connected to 𝑥6, and a shorter edge
exists between 𝑥1 and 𝑥6. The connectivity enhancement process
ensures the graph connectivity by adding reverse edges, as depicted
by the green lines.

5 HIERARCHICAL INTEGRATION AND COMPLEX-
ITY ANALYSIS

5.1 HNSW-Adaptive Merging
Many mainstream graph-based ANNS methods typically construct
a single-layer index, where we can directly apply our FGIM frame-
work to merge the indexes. However, the widely used HNSW [28]
method builds a multi-layer graph structure, where each layer
contains vertices of varying density, thereby enabling superior
search performance. Notably, the number of vertices in each layer
of HNSW decreases exponentially with increasing layer depth, i.e.,
𝑃 (𝑙𝑒𝑣𝑒𝑙 ≥ 𝑘) ∝ exp(−𝑘). In real-world applications, this indicates
that the number of non-base layer vertices is significantly smaller
than that of the base layer. Therefore, we propose a HNSW-Adaptive
Merging Strategy, where we first merge the base layer of HNSW
using the proposed FGIM framework and subsequently reconstruct
the higher layers accordingly.

To restore the hierarchical structure of HNSW, we propose a
multi-level reconstruction algorithm, as shown in Algorithm 6.
This algorithm begins by assigning a randomly determined level
to each vertex in the base graph 𝐺 and initializing the hierarchi-
cal graph-based index G with 𝑙𝑚 levels, where 𝑙𝑚 corresponds to
the maximum level among all vertices (Lines 1-6). For each ver-
tex 𝑢 ∈ 𝑉 with a designated level 𝑙 > 1, the algorithm greedily
navigates to the closest vertex in the higher level 𝑙 + 1 and then
searches for candidate neighbors 𝐶 at each level 𝑖 from 𝑙 down to
1 using the KNNSearch function (Lines 7-14). Subsequently, the

8

Algorithm 6:Multi-level Reconstruction
Input:Merged PG 𝐺 , out-degree constraint𝑚, search

parameter 𝐿
Output: Hierarchical graph-based index G

1 L ← {}
2 foreach ∀𝑢 ∈ 𝑉 do
3 L(𝑢) ← generate random level
4 𝑙𝑚 ← max𝑢∈𝑉 L(𝑢)
5 𝑒𝑝 ← randomly select one vertex from 𝑙𝑚 level
6 initialize G with 𝑙𝑚 levels and base graph 𝐺
7 foreach ∀𝑢 ∈ 𝑉 where L(𝑢) > 0 do
8 𝑙 ← L(𝑢)
9 𝑐 ← 𝑒𝑝

10 foreach 𝑖 ← 𝑙𝑚 to 𝑙 + 1 do
11 𝑐 ← KNNSearch(𝑥𝑢 , G(𝑖), 1, 1, 𝑐)
12 𝐶 ← ∅
13 foreach 𝑖 ← 𝑙 to 1 do
14 𝐶 ← KNNSearch(𝑥𝑢 , G(𝑖), 𝐿, 𝐿, 𝑐)
15 𝑁G(𝑖) (𝑢) ← Heuristic(𝑥𝑢 , 𝐶 ,𝑚)
16 foreach ∀𝑣 ∈ 𝑁G(𝑖) (𝑢) do
17 𝑁G(𝑖) (𝑣) ← Heuristic(𝑥𝑢 , 𝑁G(𝑖) (𝑣) ∪ {𝑢},𝑚)
18 𝑐 ← 𝐶 [0]

19 return G

Heuristic function, introduced as SelectNeighborsHeuristic in the
original paper [28], is applied to prune the candidate neighbors
by the RNG pruning strategy [38] for 𝑢 at each level, ensuring ad-
herence to the out-degree constraint𝑚 (Line 15). Once candidate
neighbors are identified, bidirectional edges are added between
𝑢 and its neighbors. The same pruning process is systematically
applied to all neighbors of 𝑢 at each level (Lines 16-17).

5.2 Complexity Analysis
In this part, we analyze the complexity of our proposed FGIM
framework.
PGs to 𝑘-NNG transformation. The complexity of this transforma-
tion depends on the search complexity of the underlying graph-
based index since our framework directly takes PG as input. As-
suming that log log𝑛 ≪ 𝑑 ≪ log𝑛 (i.e., the dataset’s dimen-
sionality is much smaller than its size), we consider two state-
of-the-art graph-based ANNS methods: NSG [16] and HNSW [28],
both of which have a search complexity of 𝑂 (log𝑛). Given ℎ PGs,
G = {𝐺1,𝐺2, . . . ,𝐺ℎ}, and an out-degree constraint 𝑘 , the total
complexity of this transformation is:

𝑂
⎛⎜⎝ 𝑘𝑑

ℎ − 1

ℎ∑︂
𝑖=1

𝑛𝑖

∑︂
𝑗≠𝑖

log𝑛 𝑗
⎞⎟⎠ . (5)

𝑘-NNG refinement. Iterative update involves at most 𝐼max iterations,
where each iteration refines the graph using the streamlined refine-
ment technique. The complexity of this step is𝑂 (𝐼max ·𝑛 ·𝑘2𝑑). The
complexity of the indegree augmentation is 𝑂 (𝑛 · 𝑘). Therefore, the
total complexity of the 𝑘-NNG refinement is 𝑂 (𝐼𝑚𝑎𝑥 · 𝑛 · 𝑘2𝑑).

Table 2: The properties of the datasets.

Dataset Dim #Base #Query Metric LID

SIFT [22] 128 1,000,000 10,000 ℓ2 9.3
GIST [22] 960 1,000,000 1,000 ℓ2 18.9
Deep [7] 96 1,000,000 10,000 cosine 12.1
Glove [34] 100 1,183,513 10,000 cosine 20.0
MSong [9] 420 994,185 1,000 ℓ2 9.5
Crawl [1] 300 1,989,995 10,000 cosine 15.7

𝑘-NNG to PG transformation. In this step, the complexity of the
neighbor selection is 𝑂 (𝑛 · 𝑘2𝑑), and the complexity of the con-
nectivity enhancement is 𝑂 (𝑛 · 𝑘). Therefore, the total complexity
of the 𝑘-NNG to PG transformation is 𝑂 (𝑛 · 𝑘2).

Summarizing all components, our FGIM framework consumes:

𝑂
⎛⎜⎝ 𝑘𝑑

ℎ − 1

ℎ∑︂
𝑖=1

𝑛𝑖

∑︂
𝑗≠𝑖

log𝑛 𝑗 + 𝐼max · 𝑛 · 𝑘2𝑑⎞⎟⎠ (6)

time and𝑂 (𝑛 ·𝑘) space, where 𝑛𝑖 is the number of vertices in graph
𝐺𝑖 , 𝑘 is the maximum out-degree constraint, ℎ is the number of
graph-based indexes, and 𝐼max is the maximum number of iterations
in the 𝑘-NNG refinement process.

6 EXPERIMENTAL STUDY
In this section, we present experimental results of our FGIM frame-
work on six real-world datasets. Our evaluation seeks to answer
the following research questions:
RQ1: How does FGIM compare to other methods in terms of
merging efficiency and search performance? (§6.2)
RQ2: How does FGIM perform with other mainstream graph-
based indexes? (§6.3)
RQ3:How does FGIM perform inmergingmultiple indexes? (§6.4)
RQ4: How do different strategies contribute to FGIM? (§6.5)
RQ5: How does FGIM scale with the dataset size? (§6.6)
We begin by introducing the experimental settings, followed by

the main results to answer these above questions.

6.1 Experimental Settings
Datasets. The experiments are conducted on several popular bench-
marking datasets. All of them are real-world datasets and have been
widely used in the literature. The datasets cover various applica-
tions such as image(SIFT [22], GIST [22], Deep [7]), text(Glove [34],
Crawl [1]), and audio(MSong [9]). The properties of the datasets
are summarized in Table 2. We also use the local intrinsic dimen-
sionality (LID) [24, 42] to measure the difficulty of the datasets.
Compared algorithms. We consider applying our framework
to merge several types of mainstream graph-based indexes to ex-
tend the generality of our framework. Specifically, we introduce
several generic graph-based ANNS methods: (1) HNSW [28] is
a state-of-the-art hierarchical graph-based index that is widely
used in real-world systems. (2) Vamana [21] optimizes HNSW’s
neighbor selection strategy and is reported to achieve better search
performance. (3) 𝜏-MNG [33] is a recently proposed method that
constructs a monotonic neighborhood graph based on an existing
index. (4) NSW [27] is a representative navigable small-world graph.

9

HNSW FGIM-HNSW NSW FGIM-NSW

0.85 0.90 0.95 1.00
Recall@10

0

104

QP
S

(1
/s

)

(a) Sift (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

0

104

QP
S

(1
/s

)

(b) Deep (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

0

104

QP
S

(1
/s

)

(c) MSong (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

0

103QP
S

(1
/s

)

(d) GloVe (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

0

103

QP
S

(1
/s

)

(e) Gist (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

0

QP
S

(1
/s

)

(f) Crawl (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@100

103

QP
S

(1
/s

)

(g) Sift (𝑅𝑒𝑐𝑎𝑙𝑙@100-QPS)

0.85 0.90 0.95 1.00
Recall@100

103

QP
S

(1
/s

)

(h) Deep (𝑅𝑒𝑐𝑎𝑙𝑙@100-QPS)

0.85 0.90 0.95 1.00
Recall@100

0

103QP
S

(1
/s

)
(i) MSong (𝑅𝑒𝑐𝑎𝑙𝑙@100-QPS)

0.85 0.90 0.95 1.00
Recall@100

0

103

QP
S

(1
/s

)

(j) GloVe (𝑅𝑒𝑐𝑎𝑙𝑙@010-QPS)

0.85 0.90 0.95 1.00
Recall@100

0

QP
S

(1
/s

)

(k) Gist (𝑅𝑒𝑐𝑎𝑙𝑙@100-QPS)

0.85 0.90 0.95 1.00
Recall@100

103

QP
S

(1
/s

)

(l) Crawl (𝑅𝑒𝑐𝑎𝑙𝑙@100-QPS)

0.85 0.90 0.95 1.00
Recall@10

0

104

ND
C

(m) Sift (𝑅𝑒𝑐𝑎𝑙𝑙@10-NDC)

0.85 0.90 0.95 1.00
Recall@10

0

104

ND
C

(n) Deep (𝑅𝑒𝑐𝑎𝑙𝑙@10-NDC)

0.85 0.90 0.95 1.00
Recall@10

0

ND
C

(o) MSong (𝑅𝑒𝑐𝑎𝑙𝑙@10-NDC)

0.85 0.90 0.95 1.00
Recall@10

0

104ND
C

(p) GloVe (𝑅𝑒𝑐𝑎𝑙𝑙@10-NDC)

0.85 0.90 0.95 1.00
Recall@10

104

ND
C

(q) Gist (𝑅𝑒𝑐𝑎𝑙𝑙@10-NDC)

0.85 0.90 0.95 1.00
Recall@10

0

104

ND
C

(r) Crawl (𝑅𝑒𝑐𝑎𝑙𝑙@10-NDC)

Figure 7: QPS, NDC vs. 𝑅𝑒𝑐𝑎𝑙𝑙@10 curves and QPS vs. 𝑅𝑒𝑐𝑎𝑙𝑙@100 curves for the merged index using FGIM and incremental
Methods. (Exp.2)

Sift1M Deep1M MSong Glove Gist1M Crawl
Datasets

102

103

Bu
ild

in
g
Ti
m
e
(s
)

HNSW
FGIM-HNSW
NSW
FGIM-NSW

Figure 8: Merging efficiency.
(Exp.1)

3 parts 4 parts 5 parts 6 parts 7 parts
Datasets

1x

2x

3x

Sp
ee

du
ps
 o
ve

r H
NS

W

Sift1M
Deep1M

MSong
Glove

Gist1M
Crawl

Figure 9: Merging efficiency
in multiple indexes (Exp.6)

(5) NNDescent [14] is a representative method for constructing a
𝑘-NNG. (6) NNMerge [47] is a recent merging method specifically
designed for 𝑘-NNG. (7) DiskANN [21] proposes a merging strategy
for indexing large-scale datasets.
Parameters. For each PG used in our experiments, we follow the
approach of benchmarking papers [5, 24, 42] by employing grid
search to determine the optimal parameter values, ensuring that the
algorithm achieves its best search performance. For experiments
requiring parameter variations, we will provide detailed discussions
in the corresponding sections.
Computing Environment.We implemented the proposedmethod
in C++11 and compiled the code using CMake 3.30.2 with GCC
11.4.0 as the compiler. For multi-threading, we utilized the OpenMP
4.5 library. All experiments were conducted on a machine equipped
with an Intel Core i7-12700HCPU and 32GB of RAM, runningWSL2
Ubuntu 22.04 as the operating system. All results are averaged over
five independent runs.
Measurements. To measure the accuracy of the search results,
we use the 𝑅𝑒𝑐𝑎𝑙𝑙 metric defined in §2.1. Additionally, Queries Per
Second (QPS) and Number of Distance Computation (NDC) are used
tomeasure the search efficiency. Generally, eachmethod has its own
parameters during a search. We measure the search performance

Table 3: Comparison of existing methods. (Time: minutes,
𝑅@10: 𝑅𝑒𝑐𝑎𝑙𝑙@10, Size: index size in MB) (Exp.3)

Dataset NNMerge DiskANN FGIM (Ours)

Time 𝑅@10 Size Time 𝑅@10 Size Time 𝑅@10 Size

Sift 3.24 0.961 220.5 17.66 0.995 352.6 2.78 0.996 123.3
Deep 3.23 0.943 220.6 19.04 0.992 372.8 3.28 0.994 134.3
MSong 6.31 0.963 219.3 29.42 0.996 270.5 5.43 0.997 92.3
GloVe 10.19 0.826 522.5 53.29 0.927 789.1 7.58 0.925 324.3
Gist 28.27 0.829 430.6 109.98 0.951 219.8 21.1 0.957 100.7
Crawl 32.04 0.863 925.6 120.42 0.987 955.6 20.9 0.978 277.2

of each method by plotting the QPS vs. 𝑅𝑒𝑐𝑎𝑙𝑙@10 and 𝑅𝑒𝑐𝑎𝑙𝑙@100
curves while varying the search parameters. Besides, the building
efficiency is also evaluated by plotting the building time (BT) vs.
𝑅𝑒𝑐𝑎𝑙𝑙@10 curves while varying the construction parameters.

6.2 Efficiency Evaluation
Exp.1 & 2: Comparisonwith IncrementalMethods inMerging
Efficiency and Search Performance. In this part, we study the
merging efficiency and search performance of our FGIM framework
in comparison to the incremental construction methods of HNSW
and NSW. Each dataset is equally divided into two equal subsets,
with two indexes constructed on each subset. For the baselines, we
adopt their incremental approach, where one subset is sequentially
inserted into the index built on the other. In contrast, our methods
merge the two prebuilt indexes using the FGIM framework.

Figure 8 reports the construction cost of the merged index using
the FGIM framework and the incremental method of HNSW and
NSW. Our methods achieve substantially higher efficiency, demon-
strating speedups of 1.49× and 1.62× on Sift, 1.72× and 1.64× on
Deep, 2.95× and 2.71× on MSong, 1.75× and 1.83× on GloVe, 2.62×

10

Vamana FGIM-Vamana τ-MNG FGIM-τ-MNG NNDescent FGIM-NNDescent

0.85 0.90 0.95 1.00
Recall@10

102

103

Bu
ild

 T
im

e
(s

)

(a) Sift (𝑅𝑒𝑐𝑎𝑙𝑙@10-BT)

0.85 0.90 0.95 1.00
Recall@10

102

103

Bu
ild

 T
im

e
(s

)

(b) Deep (𝑅𝑒𝑐𝑎𝑙𝑙@10-BT)

0.85 0.90 0.95 1.00
Recall@10

102

103

Bu
ild

 T
im

e
(s

)

(c) MSong (𝑅𝑒𝑐𝑎𝑙𝑙@10-BT)

0.85 0.90 0.95 1.00
Recall@10

103

Bu
ild

 T
im

e
(s

)

(d) GloVe (𝑅𝑒𝑐𝑎𝑙𝑙@10-BT)

0.85 0.90 0.95 1.00
Recall@10

103

104

Bu
ild

 T
im

e
(s

)

(e) Gist (𝑅𝑒𝑐𝑎𝑙𝑙@10-BT)

0.85 0.90 0.95 1.00
Recall@10

103

Bu
ild

 T
im

e
(s

)

(f) Crawl (𝑅𝑒𝑐𝑎𝑙𝑙@10-BT)

Figure 10: Construction time for our merging methods and the original methods rebuilt from scratch. (Exp.4)

0.85 0.90 0.95 1.00
Recall@10

103

104

QP
S

(1
/s

)

(a) Sift (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

103

104

QP
S

(1
/s

)

(b) Deep (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

103

104

QP
S

(1
/s

)

(c) MSong (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

103

QP
S

(1
/s

)

(d) GloVe (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

102

103

QP
S

(1
/s

)

(e) Gist (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

0.85 0.90 0.95 1.00
Recall@10

103

QP
S

(1
/s

)

(f) Crawl (𝑅𝑒𝑐𝑎𝑙𝑙@10-QPS)

Figure 11: Search performance for our merging methods and the original methods rebuilt from scratch. (Exp.5)

and 2.79× on Gist, and 1.67× and 1.48× on Crawl, respectively,
compared to the incremental approach. This improvement can be
attributed to FGIM’s ability to leverage both search mechanisms
and iterative optimization strategies, thereby minimizing computa-
tional overhead. The results demonstrate that FGIM offers a more
efficient approach than the conventional incremental method.

Figure 7 evaluates the search performance of incremental meth-
ods and our methods. Across all datasets, FGIM-based methods can
achieve comparable or superior search performance compared to
the incremental methods, demonstrating that our framework can
effectively merge indexes while maintaining or enhancing search
accuracy.
Exp.3: Comparison with other methods. As we discussed in
§2.2, existingmethods exhibit significant limitations. In this part, we
evaluate thesemethods alongside our approach to demonstrate their
shortcomings. Table 3 presents a comparison of different methods,
focusing on merging time, 𝑅𝑒𝑐𝑎𝑙𝑙@10 with a fixed search parameter
of 200, and index size. NNMerge achieves relatively fast merging but
suffers from a lower𝑅𝑒𝑐𝑎𝑙𝑙@10, consistent with findings in previous
benchmark studies [24, 42], as 𝑘-NNG is not optimized for efficient
ANNS. DiskANN’s merging strategy, on the other hand, results in
multiple indexing of the same point, significantly increasing index
size and reducing efficiency. These results suggest that existing
methods are incompetent for efficiently merging graph indexes.

In summary, our FGIM framework significantly outperforms
other methods in terms of merging efficiency, achieving comparable
or even superior search performance.

6.3 Framework Applicability
In this part, we apply FGIM to merge four representative graph-
based indexes, i.e., Vamana, 𝜏-MNG, NSW, and NNDescent, further
exploring the generality and effectiveness of our framework.
Exp.4: Merging Efficiency. In this experiment, we employ build-
ing time and 𝑅𝑒𝑐𝑎𝑙𝑙@10 curves that keep search parameters fixed
(i.e., 𝐿 = 200). For each method, we systematically vary their con-
struction parameters to reconstruct indexes on the entire dataset

from scratch, ensuring that each method has at least four different
parameter configurations.

Figure 10 presents the experimental results. We can find that our
methods fulfilled the merging task with high efficiency. Specif-
ically, at the same Recall@10, (1) FGIM-Vamana achieved 3.4∼
6.9× speedups over Vamana; (2) FGIM-𝜏-MNG achieved 4.3∼ 23.2×
speedups over 𝜏-MNG; (3) FGIM-NNDescent achieved 3.3∼ 6.7×
speedups over NNDescent. On average, our method achieves a
7.4× speedup, demonstrating its efficiency in merging graph-based
indexes over reconstructing an entirely new index from scratch.
Exp.5: Search Performance. As depicted in Figure 11, FGIM-
Vamana, FGIM-𝜏-MNG, FGIM-NSW, FGIM-NNDescent consistently
achieved comparable or superior performance compared to their
original approaches. Overall, these findings demonstrate the high
applicability of our methods, which are capable of efficiently and
effectively merging graph-based indexes while preserving search
accuracy.

6.4 Multiple Indexes Merging
As discussed in §1, the ability to merge multiple graph-based in-
dexes efficiently is essential for real-time systems that need to
integrate frequently generated small indexes. To assess the effec-
tiveness of our approach, we vary the number of indexes to be
merged from 3 to 7, with each subset containing an equal number
of vectors from the original dataset, and compare the merging cost
against HNSW’s incremental method.
Exp.6: Multiple Merging Efficiency. As shown in Figure 9, our
mergingmethod consistently outperforms the incremental approach
as the number of indexes increases. Notably, although the accel-
eration gain of our method gradually diminishes with a growing
number of indexes, it still achieves a noticeable speedup even when
merging seven indexes. However, in real-world scenarios, the gener-
ated index fragments are merged offline in the background, prevent-
ing an excessive number of indexes. Therefore, our method remains
effective in this context, ensuring its applicability and scalability to
dynamic and evolving data environments.

11

32 64 96 128 160
Search Pool Size L

0

2

5

7

10

12

15

Bu
ild
 T
im
e
(s
)

×102

Sift
Gist

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca
ll@
10
 (f
ixe
d
QP
S)

Sift
Gist

Figure 12: Effects of search
pool size L (Exp.7)

Sift1M Deep1M
Datasets

0.0

0.5

1.0

1.5

2.0

2.5

Bu
ild

in
g

Ti
m

e
(s

)

1e2
FGIM-o0
FGIM-o1
FGIM-o0
FGIM

Figure 13: Effects of accelera-
tion techniques (Exp.8)

6.5 Ablation Analysis
In this part, we assess the effects of our techniques used in the
framework, i.e., the Minimum Candidate Set Strategy, the cross-
querying, the streamlined refinement, the indegree augmentation and
the reconstruction of the hierarchical graph structure.
Exp.7: Effects of Minimum Candidate Set Strategy. According
to our strategy, when selecting cross-graph candidate neighbors, we
set the search pool size to the minimum feasible value. A key ques-
tion is whether this affects the quality of the graph. To investigate
this, we increase L while keeping QPS fixed (4000 for SIFT and 800
for GIST) and observe the changes in merging time and 𝑅𝑒𝑐𝑎𝑙𝑙@10,
as shown in Figure 12. Our findings demonstrate that this strategy
achieves the shortest index merging time without compromising
graph quality, which can be explained that the iterative refinement
allows the graph structure to converge to a similar structure.
Exp.8: Effects of Acceleration Technique. We first evaluate the
effects of the cross-querying and the streamlined refinement. Notably,
these techniques do not affect the final graph structure since the
graph will converge to a similar optimal structure after iterative
refinement, thus we only evaluate the merging efficiency. We de-
fine four variants for comparison: FGIM-o0 without any technique;
FGIM-o1, which incorporates only cross-querying and adopts the
original NNDescent for refinement; FGIM-o2, which employs only
streamlined refinement and initializes the merged index by ran-
domly introducing vertices from the other indexes. We report the
building time of the merged index on the Sift dataset in Figure 13.
Overall, each technique contributes to a significant acceleration of
the merging process. Since these optimizations are mutually inde-
pendent, their combined application FG yields the lowest overall
construction cost.
Exp.9: Effects of Performance Optimization. Figure 14 evalu-
ates the effects of the indegree augmentation and the reconstruction
of hierarchical graph structure. Following the denotation in Exp.6,
we define FGIM-o3 as the method incorporating only hierarchical
graph reconstruction and FGIM-o4 as the method utilizing only
indegree augmentation. The results indicate that both techniques
contribute to improved search performance, with FGIM-o4 yielding
a more significant enhancement than FGIM-o3. This can be attrib-
uted to the effectiveness of indegree augmentation in enhancing
graph connectivity, thereby facilitating navigation to disconnected
vertices.

6.6 Scalability Study
Exp.10: Scalability Study. Figure 15 reports an evaluation of the
scalability of our framework on the Sift dataset. The results indicate
that our method exhibits strong scalability as the number of vectors
increases. Notably, the speedup achieved by our approach becomes

Figure 14: Effects of optimiza-
tion techniques (Exp.9)

100k 200k 500k 1M 2M
Dataset Size

1x

2x

3x

4x

Bu
ild

in
g
Sp

ee
du

p

FGIM-HNSW
FGIM-Vamana

Figure 15: Scalability study
(Exp.10)

amplified with larger dataset sizes, highlighting its superior effi-
ciency in handling large-scale data. These findings demonstrate the
robustness of our framework, making it well-suited for large-scale
applications.

7 RELATEDWORK
Recently, with the rise of Large LanguageModels (LLMs) and retrieval-
augmented generation (RAG), ANNS has attracted increasing atten-
tion acting as a crucial component in these applications. Generally,
ANNS methods are devoted to efficiently finding the most similar
data points to a query in large-scale, high-dimensional datasets. Re-
cent works [5, 31] have shown that graph-basedmethods [14, 16, 28]
outperform traditional methods such as hashing-based methods
[19, 20, 37], tree-based methods [8, 30, 36], inverted index-based
methods [6, 7, 46], and quantization-basedmethods [17, 22] in terms
of search quality and efficiency.

The mainstream graph-based methods [15, 16, 21, 27, 28, 33]
build a proximity graph where each node is a base vector and
edges connect several nearby vectors. Among them, HNSW [28] is
a widely used graph-based method that is derived from small-world
networks and is constructed incrementally in an online fashion.
Other state-of-the-art methods, such as NSG [16] and 𝜏-MNG [33],
construct indexes by performing refinement operations on the ex-
isting graph (e.g., 𝑘-NNG). Due to their superior performance, these
methods have been widely adopted in production [40, 43]. Our
proposed framework is compatible with the methods mentioned
above and can be adapted to merge their indexes.

8 CONCLUSION
In this paper, we study the problem of merging existing graph-
based indexes into a single one for effective ANNS. To achieve
this goal, we propose a general FGIM framework with three core
techniques. First, we introduce a PGs to 𝑘-NNG transformation that
consists of cross-querying and top-𝑘 selection to extract candidate
neighbors from the existing graph-based indexes. Second, we pro-
pose a streamlined and indegree-aware 𝑘-NNG refinement method
to improve candidate neighbors’ quality. Finally, the 𝑘-NNG to PG
transformation and HNSW-adaptive process are presented for better
ANNS performance. Experimental results demonstrate the general-
ity and effectiveness of our FGIM framework, yielding noticeable
speedups over state-of-the-art methods without compromising the
search performance.

REFERENCES
[1] Anon. Retrieved April 15, 2020. Common Crawl. http://commoncrawl.org/.
[2] Sunil Arya and David M Mount. 1993. Approximate nearest neighbor queries in

fixed dimensions.. In SODA, Vol. 93. Citeseer, 271–280.

12

http://commoncrawl.org/

[3] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y
Wu. 1998. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM (JACM) 45, 6 (1998), 891–923.

[4] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based
language models and applications. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts).
41–46.

[5] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020), 101374.

[6] Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE
transactions on pattern analysis and machine intelligence 37, 6 (2014), 1247–1260.

[7] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale
datasets of deep descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2055–2063.

[8] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509–517.

[9] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.
2011. TheMillion Song Dataset. In Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR 2011).

[10] Tingyang Chen, Cong Fu, Kun Wang, Xiangyu Ke, Yunjun Gao, Wenchao Zhou,
Yabo Ni, and Anxiang Zeng. 2025. Maximum Inner Product is Query-Scaled
Nearest Neighbor. arXiv preprint arXiv:2503.06882 (2025).

[11] Scott Cost and Steven Salzberg. 1993. A weighted nearest neighbor algorithm
for learning with symbolic features. Machine learning 10 (1993), 57–78.

[12] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google news personalization: scalable online collaborative filtering. In Proceed-
ings of the 16th international conference on World Wide Web. 271–280.

[13] Magdalen Dobson, Zheqi Shen, Guy E Blelloch, Laxman Dhulipala, Yan Gu,
Harsha Vardhan Simhadri, and Yihan Sun. 2023. Scaling Graph-Based ANNS
Algorithms to Billion-Size Datasets: A Comparative Analysis. arXiv preprint
arXiv:2305.04359 (2023).

[14] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph
construction for generic similarity measures. In Proceedings of the 20th interna-
tional conference on World wide web. 577–586.

[15] Cong Fu, Changxu Wang, and Deng Cai. 2021. High dimensional similarity
search with satellite system graph: Efficiency, scalability, and unindexed query
compatibility. IEEE Transactions on Pattern Analysis and Machine Intelligence 44,
8 (2021), 4139–4150.

[16] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast Approximate
Nearest Neighbor SearchWith The Navigating Spreading-out Graph. Proceedings
of the VLDB Endowment 12, 5 (2017).

[17] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE transactions on pattern analysis and machine intelligence 36, 4
(2013), 744–755.

[18] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia
Lawall. 2009. Entropy: a consolidation manager for clusters. In Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. 41–50.

[19] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-aware locality-sensitive hashing for approximate nearest neighbor search.
Proceedings of the VLDB Endowment 9, 1 (2015), 1–12.

[20] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[21] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[22] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[23] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in neural information processing systems 33 (2020), 9459–9474.

[24] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2019. Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2019), 1475–1488.

[25] Jian Lin, Li Zha, and Zhiwei Xu. 2013. Consolidated cluster systems for data
centers in the cloud age: a survey and analysis. Frontiers of Computer Science 7
(2013), 1–19.

[26] Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi
Chen, Chengruidong Zhang, Bailu Ding, Kai Zhang, et al. 2024. Retrievalattention:
Accelerating long-context llm inference via vector retrieval. arXiv preprint
arXiv:2409.10516 (2024).

[27] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61–68.

[28] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[29] Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Jun Guo, Benben
Liao, and Guangyong Chen. 2020. Pmd: An optimal transportation-based user
distance for recommender systems. In Advances in Information Retrieval: 42nd
European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020,
Proceedings, Part II 42. Springer, 272–280.

[30] Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms
for high dimensional data. IEEE transactions on pattern analysis and machine
intelligence 36, 11 (2014), 2227–2240.

[31] Bilegsaikhan Naidan, Leonid Boytsov, and Eric Nyberg. 2015. Permutation Search
Methods are Efficient, Yet Faster Search is Possible. Proceedings of the VLDB
Endowment 8, 12 (2015).

[32] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.

[33] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023.
Efficient approximate nearest neighbor search in multi-dimensional databases.
Proceedings of the ACM on Management of Data 1, 1 (2023), 1–27.

[34] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[35] Manan D Shah and Harshad B Prajapati. 2013. Reallocation and allocation of
virtual machines in cloud computing. arXiv preprint arXiv:1304.3978 (2013).

[36] Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-trees for fast image
descriptor matching. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 1–8.

[37] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:
solving c-approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. Proceedings of the VLDB Endowment (2014).

[38] Godfried T Toussaint. 1980. The relative neighbourhood graph of a finite planar
set. Pattern recognition 12, 4 (1980), 261–268.

[39] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng
Li. 2012. Scalable k-nn graph construction for visual descriptors. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 1106–1113.

[40] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[41] Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, and Xindong Wu. 2020. A
survey on large-scale machine learning. IEEE Transactions on Knowledge and
Data Engineering 34, 6 (2020), 2574–2594.

[42] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. Proceedings of the VLDB Endowment 14, 11 (2021),
1964–1978.

[43] Mingyu Yang,Wentao Li, Jiabao Jin, Xiaoyao Zhong, XiangyuWang, Zhitao Shen,
Wei Jia, and Wei Wang. 2024. Effective and General Distance Computation for
Approximate Nearest Neighbor Search. (2024). https://arxiv.org/abs/2404.16322

[44] Shuo Yang, Jiadong Xie, Yingfan Liu, Jeffrey Xu Yu, Xiyue Gao, Qianru Wang,
Yanguo Peng, and Jiangtao Cui. 2024. Revisiting the Index Construction of
Proximity Graph-Based Approximate Nearest Neighbor Search. arXiv preprint
arXiv:2410.01231 (2024).

[45] Peng Cheng Xiaoyao Zhong Lei Chen Zhitao She Jingkuan Song Xiaofeng Cao
Heng Tao Shen Xuemin Lin Zekai Wu, Jiabao Jin. 2025. Fast Graph-based
Indexes Merging for Approximate Nearest Neighbor Search [technical report].
http://cspcheng.github.io/pdf/FastMerging.pdf. (2025).

[46] Peitian Zhang and Zheng Liu. 2022. Bi-Phase Enhanced IVFPQ for Time-Efficient
Ad-hoc Retrieval. arXiv preprint arXiv:2210.05521 (2022).

13

https://arxiv.org/abs/2404.16322
http://cspcheng.github.io/pdf/FastMerging.pdf

[47] Wan-Lei Zhao, Hui Wang, Peng-Cheng Lin, and Chong-Wah Ngo. 2021. On the
Merge of k-NN Graph. IEEE Transactions on Big Data 8, 6 (2021), 1496–1510.

[48] Chun Jiang Zhu, Tan Zhu, Haining Li, Jinbo Bi, and Minghu Song. 2019. Accel-
erating large-scale molecular similarity search through exploiting high perfor-
mance computing. In 2019 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). IEEE, 330–333.

A DETAILS OF 𝑘-NNG REFINEMENT
In this section, we present the details of the 𝑘-NNG refinement
component [14], i.e., update function and sample function.

The update function iterates over all pairs of vertices ⟨𝑣1, 𝑣2⟩
within 𝐺new [𝑢] and between 𝐺new [𝑢] and 𝐺old [𝑢] (Line 1). For
each pair, it computes the distance D between 𝑣1 and 𝑣2 and ex-
tracts the farthest neighbors in 𝑁 (𝑣1) and 𝑁 (𝑣2) (Line 2). If D is
smaller than the distance to the farthest neighbor, the algorithm
replaces the farthest neighbor with the new vertex (Lines 3-6). This
iterative process continues until all pairs have been evaluated, facil-
itating mutual recognition between neighboring vertices in 𝑁 (𝑢)
and establishing direct connections between them.

The sample function is responsible for categorizing the neighbors
of vertex 𝑢 into the recorders 𝐺old, 𝐺new, 𝐺old, and 𝐺new. It first
determines whether a neighbor 𝑣 is new or old based on its flag (Line
2). If 𝑣 is new, it is added to𝐺new [𝑢], and𝑢 is added to𝐺new [𝑣] (Lines
3-5), after which the vertex is marked as old (Line 6). Otherwise, 𝑣
is inserted into𝐺old [𝑢], and 𝑢 is added to𝐺old [𝑣] (Lines 7-8). This
flag-based approach can helpfully reduce redundant computations,
without changing the final results.

Algorithm 7: Update
Input: 𝑘-NNG 𝐺 , Graph 𝐺old, 𝐺new, vertex 𝑢
Output: Refined 𝑘-NNG 𝐺

1 foreach 𝑣1, 𝑣2 ∈ 𝐺new [𝑢], 𝑣1 < 𝑣2 or 𝑣1 ∈ 𝐺new [𝑢], 𝑣2 ∈
𝐺old [𝑢] do

2 D ← 𝛿 (𝑣1, 𝑣2)
3 𝑣 ′1← the farthest neighbor in 𝑁 (𝑣1)
4 replace 𝑣 ′1 with ⟨𝑣2, 𝑑, new⟩ if D < 𝛿 (𝑣1, 𝑣 ′1)
5 𝑣 ′2← the farthest neighbor in 𝑁 (𝑣2)
6 replace 𝑣 ′2 with ⟨𝑣1, 𝑑, new⟩ if D < 𝛿 (𝑣2, 𝑣 ′2)
7 return 𝐺

Algorithm 8: Sample

Input: Neighbor set 𝑁 (𝑢), Graph 𝐺old, 𝐺new, 𝐺old, 𝐺new,
vertex 𝑢

Output: 𝐺old, 𝐺new, 𝐺old, 𝐺new

1 foreach ∀𝑣 ∈ 𝑁 (𝑢) do
2 if 𝑣 is new then
3 insert 𝑣 into 𝐺new [𝑢]
4 insert 𝑢 into 𝐺new [𝑣]
5 mark 𝑣 as old
6 else
7 insert 𝑣 into 𝐺old [𝑢]
8 insert 𝑢 into 𝐺old [𝑣]

9 return 𝐺old, 𝐺new, 𝐺old, 𝐺new

14

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Current Studies

	3 Fast Graph-based Indexes Merging Framework
	3.1 Motivation
	3.2 Pipeline of the Framework

	4 Components of the FGIM Framework
	4.1 PGs to k-NNG Transformation
	4.2 k-NNG Refinement
	4.3 k-NNG to PG Transformation

	5 Hierarchical Integration and Complexity Analysis
	5.1 HNSW-Adaptive Merging
	5.2 Complexity Analysis

	6 Experimental Study
	6.1 Experimental Settings
	6.2 Efficiency Evaluation
	6.3 Framework Applicability
	6.4 Multiple Indexes Merging
	6.5 Ablation Analysis
	6.6 Scalability Study

	7 Related Work
	8 Conclusion
	References
	A Details of k-NNG Refinement

