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Abstract—Streaming data collection is crucial for real-time
data analysis, such as event monitoring. However, directly pub-
lishing this data can lead to privacy leakage. Local Differential
Privacy (LDP) has become a standard technique for protecting
individual privacy while maintaining high accuracy in data
collection. Nevertheless, most existing LDP research on data
streams typically assumes a uniform privacy protection level,
which often result in suboptimal utility. In this paper, we address
this limitation by introducing PLDP-IDS, a novel personalized
LDP framework for infinite data streams. We also propose two
population division methods to tailor privacy protection. To
further enhance data utility, we propose two additional methods
that minimize errors through optimal window-size sampling and
improve the accuracy of highly protected data by leveraging
information from data with lower privacy levels. We validate the
efficiency and effectiveness of PLDP-IDS by conducting extensive
experiments on both real-world and synthetic datasets. Experi-
mental results demonstrate that our approaches achieves signif-
icantly higher utility accuracy than traditional non-personalized
methods, reducing the average error by 43.18% on real datasets
and 41.88% on synthetic datasets.

Index Terms—differential privacy, data stream, personalized
local differential privacy.

I. INTRODUCTION

With the widespread adoption of smart devices and high-
quality wireless networks, users can easily connect to online
services. They continuously generate and transmit data streams
to service platforms, which in turn collect and analyze these
data in real time to deliver more personalized and efficient
services.

However, directly collecting streaming data introduces sig-
nificant privacy risks, leading many users to hesitate before
engaging with such platforms. For instance, an HIV-positive
person may refuse to participate in a related investigation due
to privacy concerns [1]. To address this issue, Differential
Privacy (DP) [2] is proposed, which protects individual privacy
through a trusted third party. To further mitigate privacy risks
arising from reliance on such a third party, Local Differential
Privacy (LDP) has been developed as a more decentralized
and privacy-preserving solution.

Recently, w-event privacy based on LDP (w-event LDP)
has been introduced for private stream data collection and
analysis [3]. This approach effectively protects related events
within a window size of w (also referred to as an event block or
a window). However, in real-world scenarios, users often gen-

erate data streams with diverse temporal patterns and varying
window lengths [4]. For example, most entertainers prefer not
to disclose their locations, while many street artists willingly
reveal theirs to attract more attention. Consequently, adopting a
uniform w-event window may lead to overprotection for users
with smaller event blocks, thereby degrading the accuracy of
data estimation.

We illustrate a privacy-preserving example of an online car-
hailing scenario in Figure 1.

Fig. 1: An example for personalized w-event

Example 1. Consider a scenario with n = 100 drivers U =
{u1, . . . , u100}, driving among 5 locations, {loc1, . . . , loc5}.
As shown in Figure 1, these 100 drivers provide their respec-
tive stream data. For users u1 through u98, the largest size
of related events is 4 (the window size is no larger than 4).
For u99 and u100, the largest size of related events is 8. To
protect each user’s privacy under traditional w-event privacy,
we would set the event window size w to 8, fully utilize the
privacy budget to maintain high utility while satisfying 8-event
privacy. Assuming the total privacy budget ϵ = 1, the upper
bound of absolute error for this example under 8-event privacy
is:

AEu =

√︄
VarFO

[︃
ϵ

w
,N

]︃
=

√︄
n×

d− 2 + eϵ/w

(eϵ/w − 1)2
≈ 152.68.

However, it‘s unnecessary for the first 98 users to have a
window size of 8, as this would only achieve 8-event privacy
for them. By dividing the 100 users into two groups — group
1 consisting of the first 98 users, and group 2 consisting of
the remaining two users — we can create two sub-mechanisms



with distinct privacy levels: w1-event privacy (with w1 = 4)
for group 1 and w2-event privacy (with w2 = 8 for group 2).
With group 1 containing n1 = 98 users and group 2 containing
n2 = 2 users, the upper bound of absolute error becomes:

AEu =

√︄
VarFO

[︃
ϵ

w1

, N1

]︃
+ VarFO

[︃
ϵ

w2

, N2

]︃
≈ 75.3,

which is significantly lower than the error under uniform 8-
event privacy.

In this paper, we conduct a detail analysis of error charac-
teristics introduced by Personalized Local Differential Privacy
(PLDP) [5] mechanisms in streaming data collection. Based on
the theoretical foundation of PLDP, we propose two baseline
methods, PLDP Population Distribution (PLPD) and PLDP
Population Absorption (PLPA), to improve data utility under
personalized privacy settings. However, these two methods do
not fully exploit the heterogeneity of personalized window
sizes, nor do they leverage the information published under
lower privacy protection (i.e., higher utility) to enhance the
estimation of high-privacy data. To overcome these limita-
tions, we further design PLDP Population Distribution Plus
(PLPD+) and PLDP Population Absorption Plus (PLPA+),
which choose the best window size with the lowest error and
improve the estimation of high-privacy data using low-privacy
data, achieving superior overall utility.

Contributions. We summarize our contributions as follows:

• We formally define the problem of Personalized Private
Steaming Data Estimation in Local Setting, which focuses
on enable statistical analysis of personalized data streams
while ensuring personalized privacy protection (i.e., w-
event PLDP) in Section III.

• We propose two effective population division-based meth-
ods PLDP Population Distribution (PLPD) and PLDP
Population Absorption (PLPA) under PLDP in Sec-
tion IV.

• We further introduce two enhanced methods PLDP Pop-
ulation Distribution Plus (PLPD+) and PLDP Population
Absorption Plus (PLPA+) in Section V.

• We evaluate the proposed methods on both real and
synthetic datasets to demonstrate their efficiency and
effectiveness in Section VI.

II. RELATED WORK

A. Local Differential Privacy on Streaming Data

Differential Privacy (DP) [2] provides a rigorous privacy
framework but relies on a trusted third party to perturb data
before aggregation, which limits its practicality in decentral-
ized settings. Local Differential Privacy (LDP) [6] addresses
this issue by allowing each user to randomize their data locally,
removing the need for centralized trust. LDP has been widely
adopted by companies such as Microsoft, Apple, and Google.
Streaming data estimation under LDP can be categorized into
event-level, user-level, and w-event LDP, depending on the
granularity and temporal scope of privacy protection.

Event-level LDP (event-LDP) protects each individual
record independently. Representative works such as RAP-
POR [7] and ToPL [8] enable privacy-preserving data collec-
tion and aggregation under the local model. However, event-
LDP focuses solely on single events and neglects correlations
among events within a user’s data stream.

Recent advances in user-level LDP have focused on ad-
dressing temporal correlations in time series and improving
long-term utility [9]–[12]. These studies propose mechanisms
for continual data collection, adaptive budget allocation, and
pattern extraction, enabling user-level privacy preservation
over time. However, existing approaches are limited to finite
or constrained settings and still face challenges such as cumu-
lative budget consumption, rigid structural assumptions, and
limited poor adaptability to highly dynamic or unsegmented
data streams.
w-event privacy is first proposed by Kellaris et al. [13]

under DP settings, which provides privacy protection for event
sequences occurring within a window of length w. Ren et
al. [3] extend w-event privacy to local settings, and propose
LDP-IDS, a framework for infinite streaming data collection
and analysis under the w-event LDP model. They introduce
two budget allocation methods and two population allocation
methods to bridge the gap between event-level and user-level
LDP, improving estimation accuracy. Despite these advance-
ments, existing methods still fail to accommodate personalized
event window sizes, limiting their flexibility in real-world
applications.

B. Personalized Differential Privacy

Personalized Differential Privacy (PDP), also known as
Heterogeneous Differential Privacy (HDP) [14], can be divided
into item-grained and user-grained privacy models. In the
item-grained setting, PDP assigns different privacy levels to
individual attributes or features within a dataset, while in
the user-grained setting, each user specifies a personalized
privacy budget, enabling heterogeneous privacy guarantees
across users.
Item-grained Privacy. Kotsogiannis et al. [15] observe that
records vary in sensitivity and propose One-Sided Differential
Privacy (OSDP), which distinguishes between sensitive and
non-sensitive data to improve utility. However, protecting the
sensitivity state itself requires perturbing non-sensitive data,
thereby reducing estimation accuracy. Kifer and Machanava-
jjhala [16] introduce the Pufferfish framework, enabling cus-
tomizable privacy protection across attributes and relation-
ships. Building on this, He et al. [17] propose Blowfish,
which relaxes protection for less sensitive attributes to en-
hance practicality, and has been extended to domains such
as graph privacy [18] and interactive data exploration [19].
Despite their effectiveness [20]–[23], both frameworks rely on
manual policy specification and complex modeling, limiting
their scalability and adoption in practical systems. Song et
al. [24] observe that attributes vary in sensitivity and propose
Personalized Randomized Response (PRR), a perturbation
framework that assigns attribute-specific weights to enhance



TABLE I: Summary for related work.
Categories Model Types Methods Infinite &

correlated Trust-free Personalized

RAPPOR [7] × ✓ ×event-level
privacy ToPL [8] × ✓ ×

CGM [9] ✓ ✓ ×
DDRM [10] ✓ ✓ ×

StaSwitch [11] ✓ ✓ ×
user-level
privacy

PrivShape [12] ✓ ✓ ×

LDP on
streaming

data

w-event LDP LDP-IDS [3] ✓ ✓ ×
OSDP [15] × × ✓

Pufferfish [16], [20]–[23] ✓ × ✓
Blowfish [17]–[19] ✓ × ✓

item-grained
privacy

PRR [24] × ✓ ✓
SM [26] × × ✓

AdaPDP [27] × × ✓
ADPM [28] × × ✓

PCE [29] × ✓ ✓
HDG-COE [30] × ✓ ✓

Personalized
DP

user-grained
privacy

PLDP-MRQ [5] × ✓ ✓
w-event under PDP PBD & PBA [4] × ✓ ✓

Out methods ✓ ✓ ✓

data utility under personalized protection. Compared with
traditional Randomized Response (RR) [25], PRR achieves
higher statistical accuracy; however, it focuses only on at-
tribute sensitivity, overlooking individual differences.
User-grained Privacy. Jorgensen et al. [26] introduce Per-
sonalized Differential Privacy (PDP), allowing users to spec-
ify individual privacy requirements, and propose the Sample
Mechanism (SM) to minimize utility loss. Building on this
idea, Niu et al. [27] develop Adaptive Personalized Differential
Privacy (AdaPDP), which adaptively selects noise-generation
strategies based on query type, data distribution, and privacy
preferences to maximize utility across multiple rounds. How-
ever, its iterative sampling incurs high computational cost
and depends heavily on model training, limiting real-world
applicability. More recently, Chaudhuri et al. [28] propose
an Affine Differentially Private Mean Estimator (ADPM) for
heterogeneous DP, achieving minimax-optimal estimation un-
der heterogeneous privacy constraints. However, it assume all
users’ data are independent and identically distributed (i.i.d.)
samples of the same distribution. Chen et al. [29] introduce
PLDP, a personalized local differential privacy model that
allows each user to define a safe region and privacy level, along
with lightweight protocols such as PCE and PSDA to improve
count estimation accuracy. Li et al. [30] propose HDG-COE,
which enables users to specify personalized indistinguishable
areas for protection, achieving high utility, though it incurs
considerable time complexity in high-dimensional settings. He
et al. [5] develop PLDP-MRQ, a framework for personalized
local differential privacy over multi-dimensional range queries,
combining personalized random rotation with hierarchical ag-
gregation for improved accuracy. Despite these advancements,
existing user-grained approaches remain limited in capturing
evolving user behavior and cannot maintain privacy guarantees
under continuous temporal correlations.

III. PROBLEM SETTINGS

In this section, we first introduce key conceptions related
to data streams and personalized local differential privacy.
Next, we outline the main assumptions of our model. We then
present our new privacy definition: w-Event ϵ-Personalized
Local Differential Privacy ((w, ϵ)-EPLDP). Finally, we pro-
vide the problem definition: Personalized Private Steaming

TABLE II: Notations.
Notations Description

ui the i-th user
n the size of U
w the privacy window size of U
wi ui’s privacy window size
ϵ the privacy budget set of U
ϵi ui’s privacy budget
ϵ̃ the unique list of ϵ
ϵ̃k the k-the value in ϵ̃
g the frequency list of users’ privacy budget requirement
gk the frequency of users requiring ϵ̃k (i.e., gk = g[k])
d the domain size of the attribute
m the number of unique privacy budget requirements
f the real statistical histogram at any time slot
f t the real statistical histogram at time slot t
f̂ t the estimation statistical histogram at time slot t
h the obfuscated statistical frequency at any time slot
ht the obfuscated statistic frequency at time slot t
ωj the j-th value in the domain of A
gk the frequency of requiring ϵ̃k among all users

fj ,f [j] the frequency that ωj occurs
f̂j , f̂ [j] the estimation value of fj
hj ,h[j] the obfuscated frequency that ωj occurs

Data Estimation in Local Setting (PPSDELS). Table II sum-
marizes the notions used in this paper.

A. Data Streams

Let D ∈ D denote a database with a single attribute and n
items. Each item xi corresponds to the data of user ui. Let d
represent the domain size of the attribute, and let the domain
be defined as Ω = {ω1, . . . , ωd}. Then D can be represent as
an n × d binary matrix, where the value bi,j ∈ {0, 1} at the
i-th row and j-th column indicates whether the data value of
ui is ωj (bi,j = 1) or not (bi,j = 0).

Definition 1 (Data Stream [13]). Let Dt ∈ D be a database
at t-th time slot. The infinite sequence S = ⟨D1, D2, . . .⟩ is
called a data stream, where S[t] denotes the t-th element of
S (i.e., S[t] = Dt).

Let Sτ,t (1 ≤ τ ≤ t) be a sub-stream of S from time slot τ
to time slot t, with length t− τ +1. Specifically, when τ = 1,
we abbreviate Sτ,t as St, which also represents a stream prefix
of S composed of tuples arriving on or before time t.

Definition 2 (w-Neighboring Stream Prefixes [13], [31]). Let
w be a positive integer. Two stream prefixes St, S′

t are w-
neighboring (i.e., St ∼w S′

t), if:

1) for each St[τ ], S′
t[τ ] such that τ ≤ t and St[τ ] ̸= S′

t[τ ],
it holds that St[τ ] and S′

t[τ ] are neighboring [13] in
centralized DP, and

2) for each St[τ1], St[τ2], S′
t[τ1], S

′
t[τ2] with τ1 ≤ τ2, St[τ1] ̸=

S′
t[τ1] and St[τ2] ̸= S′

t[τ2], it holds that τ2 − τ1 + 1 ≤ w.

Definition 3 (Data Stream Frequency Estimation [4]). Let Q :
D → Rd be a frequency query. Let Q(S[t]) = Q(Dt) = f t
be the frequency vector of all ω ∈ Ω(A) to be published at
time slot t, where f t[j] represents the frequency of ωj in Dt.
The infinite data frequency series ⟨f1,f2, . . .⟩ is called a data
stream frequency estimation.



B. w-Event ϵ-Personalized Local Differential Privacy

Let U be the domain of users and E be the domain of
privacy budgets. Let U ⊆ U be the user set with n users,
specifically, U = {u1, . . . , un}. Let ϵ : U → E be the privacy
budget requirement function, where ϵ(ui) = ϵi indicates that
ui requires ϵi privacy budget. We define ϵ̃ = Unique(ϵ) as the
unique privacy budget list with size m = |ϵ̃|. Let Dk be the
database domain protected by ϵ̃k.

Definition 4 (Budget Group and Budget Group Data). Given a
unique privacy budget list ϵ̃ with |ϵ̃| = m and a user set U ⊆ U
with n users, where each user ui holds a privacy budget ϵi ∈ ϵ̃,
U can be divided into m groups {U1, U2, . . . Um} based on
distinct privacy budgets. The pair BGj = (ϵj , Uj) is called
the j-th Budget Group of U . Let Yj be the output of each
ui ∈ Uj achieving ϵj-Local Differential Privacy on the data
domain Ω. The tuple BGDj = (ϵj , Uj , Yj) is called the j-th
Budget Group Data of U .

Definition 5 (ϵ-Personalized Local Differential Privacy,
ϵ-PLDP [5]). A mechanism M satisfies ϵ-PLDP if and only
if, for any user u with possible input values x, x′ ∈ Dk ⊆ Dk,

∀y ∈ Range(M) : Pr[M(x) = y] ≤ e
ϵ(u)

Pr[M(x
′
) = y],

where Range(M) denotes the set of all possible outputs of
M.

Definition 6 (w-Event ϵ-Personalized Local Differential Pri-
vacy, (w, ϵ)-EPLDP). Let M be a mechanism that takes a
stream prefix of arbitrary τ size as inputs. Let O be the
set of all possible outputs of M. For any universe set of
users U = {u1, u2, . . . , u|U |}, M satisfies (w, ϵ)-EPLDP if
∀wi ∈ w, ∀Sτ , S′

τ satisfying Sτ ∼wi
S′
τ and ∀O ⊆ O, it

holds that

Pr[M(Sτ ) ∈ O] ≤ e
ϵ(ui) Pr[M(S

′
τ ) ∈ O],

where ui requires wi-event ϵi-LDP privacy. When the output
set is discrete, i.e. O =

{︁
y1, y2, . . . y|O|

}︁
, the condition above

can also be rewritten as

Pr[M(Sτ ) = y] ≤ e
ϵ(ui) Pr[M(S

′
τ ) = y].

The pair (wi, ϵi) is denoted as ui’s privacy requirement [4].
When wi ≡ 1, (w, ϵ)-EPLDP collapses to ϵ-PLDP [5].
Additionally, when (wi, ϵi) is a constant pair

(︁
i.e., (w, ϵ)

)︁
,

it collapses to w-Event ϵ-LDP [3].

C. Privacy Definition

Definition 7. (w-Event ϵ-Personalized Local Differential Pri-
vacy, (w, ϵ)-EPLDP). Let M be a mechanism that takes a
stream prefix St of arbitrary size as input. Given a universe
of n users U = {u1, u2, . . . , un}, M is (w, ϵ)-EPLDP if
∀wi ∈ w and ∀St, S′

t satisfying St ∼wi S
′
t, it holds that

∀Y ∈ Range(M),Pr[M(St) = Y ] ≤ e
ϵi Pr[M(S

′
t) = Y ],

where ui ∈ U requires wi-event privacy and ϵi denotes ui’s
privacy budget requirement within wi continuous events.

Similar to the formulation in CDP setting [4], we define
the pair (wi, ϵi) as the privacy requirement of ui. Specifically,
when wi = 1, this reduces to ϵ-Personalized Local Differ-
ential Privacy (ϵ-PLDP) [5], [29]. Moreover, when (wi, ϵi)
is fixed for all users (i.e., (w, ϵ)), it corresponds to w-Event
Privacy [3], [13].

D. Problem Definition

Given a data stream S, the server aims to obtain the
data stream frequency estimation, denoted as ⟨f1,f2, . . .⟩.
However, to protect user privacy in local setting, the server
can only receive the obfuscated stream from each ui and
subsequently publishes the obfuscated data stream frequency
estimation, denoted as

⟨︂
f̂1, f̂2, . . .

⟩︂
. We now define the

problem as follows.

Definition 8. (PPSDELS Problem). Given any positive integer
T ∈ N+, a user set U = {u1, u2, ..., un}, where each ui holds
a privacy requirement pair (wi, ϵi) and a series of data xi,t
for t ∈ [T ], all the xi,t at time slot t form Dt, and all the Dt

form a data stream prefix ST = ⟨D1, D2, . . . , DT ⟩. PPSDELS
is to publish an obfuscated stream prefix frequency estimation⟨︂
f̂1, f̂2, . . . , f̂T

⟩︂
of ST achieving (w, ϵ)-EPLDP with the

error between f̂ and f minimized, namely:

min
∑︂

t∈[T ]

∥f̂t − ft∥
2
2

s.t.

t∑︂
τ=min (t−wi+1,1)

ϵi,τ ≤ ϵi, ∀ui ∈ U

where ϵi,τ denotes the privacy budget at time slot τ .

IV. POPULATION DIVISION-BASED APPROACHES

Many studies [3], [25], [32] have shown that partitioning
users into groups and using the entire privacy budget within
each group achieves higher utility compared to dividing the
budget. In this section, we first encapsulate frequency estima-
tion under PLDP as the Personalized Frequency Oracle (PFO)
protocol. We then analyze the errors introduced by population
division in PFO. Finally, we propose two population division-
based approaches: PLDP Population Distribution (PLPD) and
PLDP Population Absorption (PLPA), which achieve accurate
estimation by dynamically recycling population while satisfy-
ing PLDP constraints.

A. Personalized Frequency Oracle

Similar to Frequency Oracle (FO) [33] in the LDP model,
frequency estimation under PLDP can also be encapsulated
into a standard protocol. Here, we refer to this as the Person-
alized Frequency Oracle (PFO).

PFO consists of three functions: the Perturbation function
PFO.P, the Aggregate function PFO.A and the Estimation
function PFO.E. The function PFO.P randomizes the raw data
into obfuscated data using the PLDP algorithm. PFO.A calcu-
lates the aggregate statistic for different parts of the obfuscated
data. PFO.E is responsible for estimating the distribution of
raw data.



There are many implementations of PFO, such as Person-
alized Hybrid-Dimensional Grids (P-HDG) [5] and Person-
alized Low-Dimensional Hierarchy-Interval Optimization (P-
HIO) [5]. Here, we illustrate another implementation of PFO
called Generalized Personalized Random Response (GPRR).
In GPRR, the output domain is equal to the input domain.
Let pi be the probability that ui reports real data (i.e.,
yi = xi), then the probability of reporting any fake data (i.e.,
yi ∈ Ω\{xi}) is qi = 1−pi

d−1 . Specifically, we have:

PFO.P : ∀yi ∈ Ω,Pr[M(xi) = yi] =

⎧⎪⎪⎨⎪⎪⎩
pi =

eϵi

eϵi + d− 1
, if yi = xi,

qi =
1

eϵi + d− 1
, otherwise.

After receiving the obfuscated reports yk ⊆ Y from all
users across different groups divided by distinct ϵ̃k ∈ ϵ̃, the
server computes the obfuscated statistic of each value ωj ∈ Ω
for every group Gk as follow:

PFO.A : ∀k ∈ [m], j ∈ [d], hk,j =
Count (yk,j)

n · gk
,

The obfuscated statistic of group Gk is denoted as hk =<
hk,1, hk,2, . . . , hk,d >. Subsequently, the server estimates the
global frequency distribution as:

PFO.E : ∀f̂j ∈ f̂ , fĵ =

m∑︂
k=1

αk ·
hk,j − q̃k
p̃k − q̃k

, (1)

where αk =
1/Var[f̂k,j]∑︁m

k′=1
1/Var[f̂k′,j]

is the weight of group Gk in

the final obfuscated estimation, and f̂
(k)

j denotes the estimation

of ωj in Group Gk. And Var
[︂
f̂k,j

]︂
represents the variance

under ϵk-LDP [5].
However, when implementing ϵk-LDP using the General-

ized Randomized Response (GRR) mechanism, the variance
is given by Var

[︂
f̂
(k)

j

]︂
= q̃k(1−q̃k)

ngk(p̃k−q̃k)2
+ 1−p̃k−q̃k

ngk(p̃k−q̃k)
· fj ,

which depends on the true frequency fj . Since fj is un-
known, this formulation is infeasible for practical computation.
To address this issue, we modify the weight definition as

αk =
1/Var[f̂k,j]∑︁m

k′=1
1/Var[f̂k′,j]

, where the average variance is given

by Var
[︂
f̂k,j

]︂
= q̃k(1−q̃k)

ngk(p̃k−q̃k)2
+ 1−p̃k−q̃k

ngk(p̃k−q̃k)
· 1
d . Here, p̃k and

q̃k represent the probabilities that users with ϵ̃k report their
true data and fake data, respectively. The weight parameter
αk is therefore determined solely by gk and q̃k.

Based on the modified weights, we can calculate the total
variance in PLDP as:

Var
[︂
f̂
]︂
= 1/

m∑︂
k=1

n/ (dλk + µk) , (2)

where λk = q̃k(1−q̃k)
gk(p̃k−q̃k)2

and µk = 1−p̃k−q̃k
gk(p̃k−q̃k)

. For more
details of the modified weights and the calculation process
for the total variance, please refer to Appendix IX-B our
report [38]. We abbreviate the total variance in Equation (2)
as VPLDP(ϵ̃, g, n, d), where g is the count list of ϵ̃ among the
n users.

B. Private Strategy Determination

The core idea of population division methods is to adap-
tively adjust the participating population at each time slot. This
process can be regarded as a form of strategy determination.
Specifically, the method compares the private dissimilarity dis
with the reporting error err at the current time slot. If dis
exceeds err, the mechanism performs a new estimation using
a new portion of population. Otherwise, it reuses the previous
estimation as an approximation, without consuming additional
population resources.
Dissimilarity. The definition of dis in ϵ-PLDP is similar to
that in the standard LDP, which is defined as

dis =
1

d

d∑︂
j=1

(︂
f̂s,t[j] − f̂ l[j]

)︂2
−

1

d

d∑︂
j=1

Var
[︂
f̂s,t[j]

]︂
. (3)

Further details about the computation and analysis of dis are
provided in Appendix IX-C of our report [38]. In contrast,
the definition of err in PLDP is more complex and differs
substantially from that in ϵ-PLDP. Therefore, we need to
redefine these variables accordingly.
Reporting Errors. Similar to population division methods
under LDP [32], population division under PLDP can also be
decomposed into two components: the variance due to PLDP
perturbation and the variance due to sampling. The variance
for PLDP perturbation, denoted as VPLDP(ϵ̃, g, n, d), has been
shown in Equation (2).

Variance for Sampling. Given a sample of users U with
size z, let Xj denote the number of occurrences of ωj ∈ Ω
within this sample. Then Xj follows a Hypergeometric Dis-
tribution [34], and its variance can be expressed as

Var [Xj ] = z · fj · (1 − fj) ·
n− z

n− 1
.

Accordingly, the variance of estimated frequency for Ωj is:

Var
[︂
f̂j

]︂
=

1

z2
Var [Xj ] =

fj · (1 − fj)

z
·
n− z

n− 1
.

Thus, the variance of the entire frequency estimation is given
by:

Var
[︂
f̂
]︂
=

d∑︂
j=1

fj · (1 − fj)

z
·
n− z

n− 1
=

n− z

z(n− 1)

⎛⎝1 −
d∑︂

j=1

f
2
j

⎞⎠ . (4)

When the domain size d is large,
∑︁d
j=1 f

2
j ≈ 0, and the upper

bound of Equation (4) becomes:

Var∗
[︂
f̂
]︂
=

n− z

z(n− 1)
. (5)

We abbreviate Equation (5) as Vsmpl (n, z).
Reporting Errors for population division under PLDP. The

total variance combining both sampling and perturbation ef-
fects is expressed as:

V(ϵ̃, g, n, z, d)

=Vsmpl (n, z) + VPLDP(ϵ̃, g, z, d)

=
n− z

z(n− 1)
+ 1/

m∑︂
k=1

z/ (dλk + µk) ,

(6)



We defined the reporting error as the average variance across
all values in the output domain, given by:

err(ϵ̃, g, n, z, d)

=
1

d

(︂
Vsmpl (n, z) + VPLDP(ϵ̃, g, z, d)

)︂
=

n− z

dz(n− 1)
+ 1/

m∑︂
k=1

dz/ (dλk + µk) ,

(7)

From Equation (7), we observe that, for fixed privacy re-
quirements, a larger sampling size results in a smaller reporting
error.

After defining the dissimilarity and reporting error, we now
propose two methods: PLDP Population Distribution (PLPD)
and PLDP Population Absorption (PLPA), which follow the
main idea described above. Both methods share the same pri-
vate dissimilarity calculation module (Ms,t), which consumes
a fixed-size population Us,t at each time slot. However, they
differ in the private publication module (Mr,t), where each
method adopts a distinct dynamic allocation strategy for the
publication population Ur,t across the steam. We refer to Us,t
as the dissimilarity population, and Ur,t as the publication
population.

C. PLDP Population Basic Solutions

To address the problem under personalized local differential
privacy settings, we propose two basic PLDP population
solutions: PLDP Population Distribution (PLPD) and PLDP
Population Absorption (PLPA).

Both PLPD and PLPA are built upon LDP Budget Distribu-
tion (LBD) and LDP Budget Absorption (LBA), respectively,
as described in Reference [3]. At the initialization stage, both
methods adopt a uniform population sampling size defined as
z = mini∈[n]

⌊︂
n
wi

⌋︂
=

⌊︂
n

wmax

⌋︂
, and compute the dissimilarity

dis and error err following the same principles as in PLPD and
PLPA, while applying PFO for each estimation. Due to space
limitations, detailed descriptions are deterred to Appendix IX-
A of our report [38].

D. Analysis

Time Complexity Analysis. Let d denote the value domain
size, m the number of budget groups, and n the total number
of users, satisfying m ≤ n. Let zmin be the chosen sampling
size at each time slot, with zmin ≤ n/2. We analyze the time
complexity of PLPD and PLPA as follows.

Theorem IV.1. The time complexity of both PLPD and PLPA
is O(n+ d ·m).

Proof. Please refer to the detailed proof of Theorem IV.1 in
Appendix IX-E1 of our report [38].

Privacy Analysis. When the window size is fixed (i.e.,
w = wmax), each user in both PLPD and PLPA participates at
most once within this window. Furthermore, every estimation
is released through a PFO mechanism that satisfies ϵ-PLDP.
Therefore, the following theorem holds for the privacy guar-
antee.

Theorem IV.2. PLPD and PLPA satisfy (w, ϵ)-EPLDP.

Proof. Please refer to the detailed proof of Theorem IV.2 in
Appendix IX-F1 of our report [38].

Utility Analysis. For simplicity, given the maximum window
size wmax, we assume that at most s < wmax new publications
occur at time slots ρ1, ρ2, . . . ρs, without any budget absorption
from past time slots preceding the current window. In addition,
there exists an equal number of skipped / nullified publications
corresponding to these new publications. Let ñ denote the user
count list, where ñ(k) represents the number of users requiring
privacy budget list ϵ̃(k). Based on these settings, we provide
the following two theorems for PLPD and PLPA, respectively.

Theorem IV.3. The error upper bound of per time

slot in PLPD is 1
d3

(︂
2wmax
n−1 − 1

n−1 + 2wmaxA
)︂2

+ 4(2s−1)
s ·(︂

1
n−1 +A

)︂
− 1

n−1 , where A = d−1
min (ñ) ·

2emin (ϵ̃)+d−2

(emin (ϵ̃)−1)
2 .

Proof. The detailed proof of Theorem IV.3 is provided in
Appendix IX-G1 of our report [38].

Theorem IV.4. The error upper bound of per time slot

in PLPA is 1
d3

(︂
2wmax
n−1 − 1

n−1 + 2wmaxA
)︂2

+ BC · errnlf −
(B+1)C
n−1 +

(︂
s

n−1 + s ·A
)︂

·
(︁
2− 1

2B+1 + 2
B

)︁
, where A =

d−1
min (ñ) ·

2emin (ϵ̃)+d−2

(emin (ϵ̃)−1)
2 , B = wmax−s

2s and C = s
wmax

.

Proof. The detailed proof of Theorem IV.4 is provided in
Appendix IX-G1 of our report [38].

V. ENHANCED APPROACHES

PLPD and PLPA address the population assignment by
unifying the window size to the maximum value, i.e., wmax =
max(w1, w2, . . . , wn). However, these two methods face two
main issues: (1) the use of maximum window size results in a
minimum sampling size at each time slot, leading to large
sampling errors; (2) in personalized local different privacy
settings, data with higher privacy protection (i.e., smaller ϵ)
can reduce the accuracy of the overall estimation.

To address the first issue, we propose Optimal Population
Selection (OPS), which selects an optimal sampling size to
minimize the reporting error while maintaining privacy levels
through budget division. For the second issue, we propose a
technique to re-disturb high-ϵ data and combine it with low-ϵ
data to enhance the accuracy of the latter.

A. Optimal Population Selection

In personalized local differential privacy settings, the op-
timal sampling size strategy should take into account both
LDP error and sampling error. Thus, we need to determine
the optimal sampling size zopt that minimizes the total error.
This process is called Optimal Population Selection (OPS),
and illustrated in Algorithm 1.

OPS first calculates the unique sampling sizes z̃. Then it
iterates over all sampling size in z̃ to find the optimal one
that minimizes the reporting error (Lines 3–16). To maintain
privacy protection, during the iteration, the privacy budget ϵi of
users whose sampling size zi is smaller than the current z̃ are



Algorithm 1: Optimal Population Selection (OPS)
Input: The sampling size requirement list z = ⟨z1, . . . , zn⟩;

the privacy budget requirement list ϵ = ⟨ϵ1, . . . ϵn⟩;
the value domain size d

Output: The optimal sampling size zopt, the optimal error
erropt, the trasformed privacy budget vector ϵ′opt

1 Initialize erropt as the upper bound of error value;
2 Set z̃ ← Unique(z) as the unique list of z;
3 for z̃ ∈ z̃ do
4 Initialize ϵ′ ← ∅;
5 for zi ∈ z do
6 if zi < z̃ then
7 add ϵi/⌈z̃/zi⌉ to ϵ′;
8 else
9 add ϵi to ϵ′;

10 Set ϵ̃′ ← Unique(ϵ′);
11 Count the privacy requirement frequency g′ of ϵ̃′;
12 Calculate errtmp ← V(ϵ̃′, g′, n, z̃, d) according to

Equation (6);
13 if errtmp < erropt then
14 erropt ← errtmp;
15 zopt ← z̃;
16 ϵ′opt ← ϵ′;

17 return zopt, erropt, ϵ′opt;

divided into ⌈z̃/zi⌉ shares. The privacy budget is then updated
as a share of size ϵi/

⌈︂
z̃
zi

⌉︂
(Lines 5–9). OPS calculates the

statistic g′ of distinct new privacy budgets ϵ̃′ and records the
minimum error erropt with the corresponding optimal sampling
size zopt (Lines 10–15).

An example of OPS is provided in Example 2.

Example 2. Assume there are 10 users with sampling sizes
z = ⟨3, 5, 9, 8, 9, 5, 6, 5, 8, 9⟩ and personalized privacy bud-
gets ϵ = ⟨0.1, 0.4, 0.4, 0.1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4⟩ with d =
2. Then, the distinct sampling sizes are z̃ = [3, 5, 6, 8, 9].
OPS iterates over all z̃ ∈ z̃, dividing the privacy bud-
gets with smaller sampling sizes and calculating the cor-
responding error. Take z̃ = 6 as an example. Users with
z = 3 and z = 5 divide their privacy budgets, re-
sulting in ϵ′ = [0.05, 0.2, 0.4, 0.1, 0.4, 0.2, 0.8, 0.4, 0.8, 0.4]
and err = 0.988. The calculated errors for all z̃ are
[1.121, 0.596, 0.988, 0.721, 1.124], yielding the optimal sam-
pling size zopt = 5 with minimum error err = 0.596.

B. Utility Improvement

To further enhance utility at each private calculation (e.g.,
dis calculation or new estimation), we propose using obfus-
cated data with low privacy levels to improve the accuracy of
those with higher privacy level. This idea has been explored in
some privacy protection studies [5], [35]. Similar enhancement
concepts also appear in learning-based frameworks [36], [37].
Here, we extend the re-perturbation method in Reference [5]
in GRR settings and introduce the General Personalized Ran-
domized Response (GPRR) mechanism as follows.

Algorithm 2: Personalized Utility Enhancement (PUE)
Input: A privacy budget list ϵ̃ = ⟨ϵ̃1, ϵ̃2, . . . ϵ̃m⟩; a perturbed

data list Y = ⟨Y1, Y2, . . . Ym⟩
Output: The enhanced re-perturbed data Ŷ

1 Construct ordered budget group data
EBGD = ⟨BGD1,BGD2, . . .BGDm⟩ sorted by ϵ̃ in
ascending order;

2 Initialize Ŷ ← ∅;
3 for i ∈ [m] do
4 Initialize Ŷ i ← Yi;
5 for j ∈ [i+ 1,m] do
6 Get re-pertubed value Y ′

j ← RP(Yj , ϵ̃j , ϵ̃i) by
Equation 8;

7 Ŷ i ← Ŷ i ∪ Y ′
j ;

8 Ŷ ← Ŷ ∪ Ŷ i

9 return Ŷ ;

Theorem V.1. For any two budget group data BGDL =
(ϵL, UL, YL) and BGDH = (ϵH , UH , YH) under GPRR with
ϵL < ϵH , the variance of BGDL can be reduced by

zH

zL (zL + zH)

(︃
dqL(1 − qL)

(pL − qL)2
+

1 − pL − qL

pL − qL

)︃
through updating BGDL to BGD′

L =
(︁
ϵL, UL ∪ UH ,

YL ∪ Y ′
H

)︁
, where Y ′

H is the re-perturbed output of YH with
probability:

∀y′ ∈ Y
′
,Pr [RP(y) = y

′
] =

{︄
β, if y′ = y,

γ, otherwize,
(8)

where β = dpL−pL+pH−1
dpH−1 and γ = pH−pL

dpH−1 .

Proof. Please refer to the detailed proof of Theorem V.1 in
Appendix IX-D of our report [38].

Based on the re-perturbation method, we propose an en-
hanced utility approach called Personalized Utility Enhance-
ment (PUE) shown in Algorithm 2. In the PUE process,
privacy budgets, populations and obfuscated counts are sorted
by the privacy budgets. PUE iterates over all the privacy budget
ϵj and applies re-perturbation to the obfuscated counts whose
privacy budgets are larger than ϵi (Line 6).

Example 3. Assume the value domain is ω = {0, 1} and
there are 5 groups G1, G2, . . . G5 with sorted privacy budgets
ϵ̃ = ⟨0.2, 0.3, 0.5, 0.6, 0.8⟩. Assume the obfuscated statistics of
groups G3, G4 and G5 are {40, 60}, {70, 30} and {60, 50},
where each group adopts GRR as its base mechanism. Assume
the current enhanced group is G3 (ϵ̃3 = 0.6). Then, PUE re-
perturbs all users in G4 and G5. For u1 ∈ G4 with obfuscated
data y1 = 1, the re-perturbed data is 1 with probability β4,3 =
dp3−p3+p4−1

dp4−1 = 0.65 and 0 with probability γ4,3 = p4−p3
dp4−1 =

0.35. For u2 ∈ G5 with y2 = 0, the re-perturbed data is 1 with
probability γ5,3 = p5−p3+p4−1

dp5−1 = 0.18 and 0 with probability
β5,3 = 0.82.

C. PLDP Population Enhanced Solutions
Building upon the OPS and PUE methods, we further

propose two enhanced solutions: PLDP Population Distribu-
tion Plus (PLPD+) and PLDP Population Absorption Plus



Algorithm 3: PLDP Population Distribution Plus
Input: Available user set UA, privacy requirement (w, ϵ) of

all Users U , data domain size d, historical data
publication (f̂1, f̂2, . . . , f̂ t−1)

Output: f̂ t

1 Calculate the distinct privacy budget ϵ̃ with the statistic g;
// sub-mechanism Ms,t

2 Calculate the sampling size
z ←

⟨︂⌊︂
n

2w1

⌋︂
,
⌊︂

n
2w2

⌋︂
, . . . ,

⌊︂
n

2wn

⌋︂⟩︂
;

3 Get optimal population size and error
zopt, erropt, ϵopt ← OPS(z, ϵ, d) by Algorithm 1;

4 Sample user set Us,t, whose data is Ds,t and privacy budget
list is ϵ′opt ⊆ ϵopt, from UA with the size of zopt and
remove Us,t from UA, i.e., UA = UA\Us,t;

5 ϵ̃′opt ← Unique(ϵ′opt);
6 Get report Y s,t ← PFO.P(Ds,t) with privacy budget list ϵ′opt

from users in Us,t;
7 Calculate the enhanced report Ŷ s,t ← PUE(ϵ̃′opt,Y s,t) by

Algorithm 2;
8 Get hs,t,k ← PFO.A(Ŷ s,t) for each group Gk;
9 Estimate f̂s,t ← PFO.E(hs,t, ϵ̃

′
opt);

10 Calculate

dis← 1
d

∑︁d
j=1

(︂
f̂s,t[j]− f̂ l[j]

)︂2

− 1
d

∑︁d
j=1 Var

[︂
f̂s,t[j]

]︂
;

// sub-mechanism Mr,t

11 Calculate the optimal window size wopt ← n/(2zopt);
12 Calculate the optimal remaining population size

nr,opt ← n/2−
∑︁t−1

τ=t−wopt+1 |Ur,τ |;
13 Set the optimal number of potential publication users

npp,opt ← ⌊nr,opt/2⌋;
14 Sample a user set Ur,t from UA with the size of
|Ur,t| = npp,opt and privacy budget list ϵ′′opt ⊆ ϵopt;

15 Calculate the budget group user statistic gpp,opt of
ϵ̃′′opt = Unique(ϵ′′opt) by Ur,t;

16 Calculate the potential reporting error
err← err(ϵ̃′′opt, gpp,opt, n, npp,opt, d) by Equation (7);

17 if dis > err and npp,opt ≥ then
18 Remove Ur,t from UA, i.e., UA ← UA\Ur,t;
19 Get report Y r,t ← PFO.P(Dr,t) with privacy budget list

ϵ′′opt from users in Ur,t;
20 Calculate the enhanced report Ŷ r,t ← PUE(ϵ̃′′opt,Y r,t);
21 Get hr,t,k ← PFO.A(Ŷ r,t) for each group Gk;
22 Calculate f̂r,t ← PFO.E(hr,t, ϵ̃

′′
opt);

23 else
24 Set f̂r,t ← f̂r,t−1;

25 if t ≥ wopt then
26 UA ← UA ∪ Us,t−wopt+1 ∪ Ur,t−wopt+1;

27 return f̂r,t.

(PLPA+). The key idea behind these methods is to calculate
the optimal sampling population while maintaining privacy
protection through OPS, and to enhance utility by improving
personalized responses across all users using PUE.

PLDP Population Distribution Plus. Algorithm 3 shows the
process of PLPD+. In PLPD+, the population is treated as
a resource and divided among the slots in each window. It is
further split into two subsets, Us,t and Ur,t, for calculations in
two sub-mechanisms: Ms,t and Mr,t. Ms,t consumes Us,t to
calculate dissimilarity dis, which is compared with the current

error err to decide whether a new obfuscated statistic should
be published. Ms,t uses Ur,t to publish a new obfuscated data
when dis > err.

For the process of Ms,t, PLPD+ first calculates the popu-
lation sampling size list z for all users (Line 2). Using these
personalized sampling sizes, PLPD+ applies OPS to obtain the
optimal size zopt while ensuring privacy protection through
budget division (Line 3). Next, it samples Us,t from the
available user set UA (Line 4) and applies the PFO protocol to
calculate the dissimilarity (Line 6–10). Unlike PLPD, PLPD+

applies PUE to improve the utility of disturbed data from PFO
(Line 7).

For the process of Mr,t, PLPD+ calculates the remaining
population resource nr,opt for new publication within the win-
dow wopt (Line 12). It reserves half of nr,opt (i.e., npp,opt) for
the new publication and leaves the other half for future use
(Line 13). Based on the reserved population, it calculates the
error err for the new publication (Line 16). Unlike traditional
LDP setting [3], here, PLPD+ samples the population for the
new publication before the dissimilarity-error comparison to
improve the accuracy of the error calculation without introduc-
ing additional privacy leakage (Line 14). Then, it calculates
the current error err according to Equation (7) (Line 15–
16) and compares it with the dissimilarity dis (Line 17–24).
If dis > err, it indicates that the difference between the
current and previous estimation is large enough to warrant a
new publication. In this case, PLPD+ removes the sampled
Ur,t from the candidate population (Line 18) and applies
enhanced PFO to generate a new estimation f̂r,t (Line 19–
22). If dis ≤ err, PLPD+ discards the sampled Ur,t and
approximates the current estimation as the one at the previous
time slot (Line 24). Finally, PLPD+ recycles the population
at the wopt − 1 time slot (Line 26).

We give an example for the procedure of PLPD+ in Exam-
ple 4.

Example 4. Consider a scenario with 5 locations
{A,B,C,D,E} and 2000 users u1, u2, . . . , u2000, each with
privacy requirements from {0.2, 0.4, 0.6, 0.8} and window
size requirements from {1, 2, 3, 4}. The distinct privacy
budget list is ϵ̃ =

⟨︁
0.2, 0.4, 0.6, 0.8

⟩︁
and corresponding

probability lists are q̃ =
⟨︁
0.19, 0.18, 0.17, 0.16

⟩︁
and

p̃ =
⟨︁
0.23, 0.27, 0.31, 0.36

⟩︁
. Table III(a) shows the user

count of distinct window size-privacy budget pair. The
corresponding statistic list of ϵ̃ is g =

⟨︁
0.1305, 0.3645,

0.244, 0.261
⟩︁
. Based on the data above, the distinct sampling

size list is z̃ =
⟨︁
1000, 500, 333, 250

⟩︁
. By executing OPS,

the errors for these four sampling sizes are err =
⟨︁
0.042,

0.035, 0.0329, 0.0349
⟩︁
. Thus, the optimal sampling size is

chosen as zopt = 333. Besides, the privacy budgets for
users with window size w̃4 = 4 are divided into ⌈z3̃/z̃4⌉
= ⌈333/250⌉ = 2 shares, each having values 0.1, 0.2, 0.3, 0.4,
respectively. Table III(b) shows the user counts for the new
budget-window sizes.

At time stamp 1, the available user set UA is ini-
tially set to U . PLPD+ samples zopt = 333 users, de-



noted as Us,1 = {u1, u2, . . . , u333}. After sampling,
UA is updated as UA = UA\Us,1 = {u334, u335,
. . . , u2000}. Users in Us,1 report their obfuscated locations
using PFO.P. Assume the real statistic of Us,1 is fs,1 =⟨︁
0.183, 0.237, 0.174, 0.228, 0.177

⟩︁
. After applying PFO.P,

the perturbed statistic can be f̃s,1 =< 0.204, 0.186, 0.189,
0.204, 0.216 >. After applying PUE and PFO.A, the user
count of UA increases to 1356. The re-perturbed statis-
tic becomes h̃s,1 =

⟨︁
0.204, 0.198, 0.190, 0.198, 0.209

⟩︁
.

Using PFO.E, the estimation is calculated as f̂s,1 =⟨︁
0.301, 0.194, −0.047, 0.336, 0.215

⟩︁
and normalized by Sim-

plex Projection as
⟨︁
0.29, 0.182, 0, 0.324, 0.204

⟩︁
, where α =⟨︁

0.015, 0.062, 0.117, 0.207, 0.286, 0.313
⟩︁

for distinct privacy
budget list ϵ̃ =

⟨︁
0.1, 0.2, 0.3, 0.4, 0.6, 0.8

⟩︁
. The variance sum

is
∑︁d
j=1 Var

[︂
f̂s,1[j]

]︂
= 0.085. The dissimilarity is calculated

as dis = 0.041. The potential publication user number is
npp,opt =

⌊︁
n
2 /2

⌋︁
= 500. Thus, we calculate the reporting

error as err = 0.021. Since dis > err, the system continues
to sample 500 users from UA for a new publication. Assume
the sampling set is Ur,1 = {u334, u335, . . . , u833}. These users
report their obfuscated locations using PFO.P. Assume the real
statistic of Ur,1 is fr,1 =

⟨︁
0.2, 0.206, 0.196, 0.182, 0.216

⟩︁
,

and the perturbed statistic is f̃r,1 =
⟨︁
0.206, 0.19, 0.194,

0.23, 0.18
⟩︁
. Assume the obfuscated frequency is hr,1 =⟨︁

0.23, 0.19, 0.19, 0.21, 0.18
⟩︁
. After re-perturbing, we get

h̃r,1 =
⟨︁
0.209, 0.196, 0.208, 0.201, 0.187

⟩︁
. The final esti-

mation is f̂r,1 =
⟨︁
0.21, 0.108, 0.322, 0.281, 0.079

⟩︁
, where

α =
⟨︁
0.016, 0.064, 0.12, 0.21, 0.28, 0.313

⟩︁
for distinct pri-

vacy budget list ϵ̃ =
⟨︁
0.1, 0.2, 0.3, 0.4, 0.6, 0.8

⟩︁
. Because there

are no users for historical publications outside the window size
wmax (i.e., t < wmax), UA remain unchanged.

At time stamp 2, 333 users are still sampled from UA
for dis calculation. Assume these 333 users are Us,2 =
{u834, u835, . . . , u1166} and dis = 0.041. Then the available
user set is updated as UA = UA\Us,2 = {u1167, u1168,
. . . , u2000}. PLPD+ calculates the remaining population size
nr,opt = 2000/2− 500 = 500. Next, it calculates the potential
publication user number npp,opt = ⌊nr,opt/2⌋ = 250. It samples
npp,opt = 125 candidate users for a new publication and
calculates the reporting error as err = 0.05. Since dis ≤ err,
it aborts the new publication and approximates the publication
as f̂r,2 = f̂r,1.

Assume there is a new publications at time stamp
3, then the sampling population consumption is still
333, and the new publication population consumption is
⌊(n/2− 500− 0)/2⌋ = 250. Thus, the remaining popu-
lation is |UA| = 251 after the new publication. Assume
UA = {u1750, u1751, . . . , u2000}. Since the current times
lot t = 3 ≥ wopt, PLPD+ recycles the population con-
sumed at time stamp 1. Specifically, UA = UA ∪ Us,1 ∪
Ur,1 = {u1, u2, . . . , u833, u1750, u1751, . . . , u2000}, with a size
of |UA| = 1084.

The process repeats similarly for subsequent time stamps.

TABLE III: An example for the user counts of window size-privacy
budget pairs.

(a) The original data counts

ϵ
w 1 2 3 4

0.2 29 59 92 56
0.4 98 176 273 207
0.6 62 124 188 114
0.8 64 115 202 141

(b) The optimal new data counts

ϵ
w 1 2 3 4

0.1 0 0 0 56
0.2 29 59 92 207
0.3 0 0 0 114
0.4 98 176 273 141
0.6 62 124 188 0
0.8 64 115 202 0

PLDP Population Absorption Plus. PLPD+ reserves half
of the remaining population for future publications, making
it suitable for slow, gradual changes in data streams. How-
ever, when the data steam encounters occasional but sudden,
PLPD+ may fail to provide accurate estimation. To address
this limitation, we propose PLDP Population Absorption Plus
(PLPA+) as follows.

Algorithm 4: PLDP Population Absorption Plus
Input: Available user set UA, privacy requirement (w, ϵ) of

all Users U , data domain size d, historical data
publication (f̂1, f̂2, . . . , f̂ t−1)

Output: f̂ t

1 Calculate the distinct privacy budget ϵ̃ with the statistic g;
// sub-mechanism Ms,t

2 The same as Line 2-10 in Algorithm 3;
// sub-mechanism Mr,t

3 Calculate the optimal window size wopt ← n/(2zopt);

4 Calculate the time slots to be nullified tN =

⃓⃓
Ur,l

⃓⃓
zopt

− 1;
5 if t− l ≤ tN then
6 f̂ t ← f̂ t−1;

7 else
8 Calculate time slots that can be absorbed

tA = t− l − tN ;
9 Set the number of potential publication users

npp,opt ← zopt ·min(tA, wopt);
10 Sample a user set Ur,t from UA with the size of

|Ur,t| = npp,opt and privacy budget list ϵ′′opt ⊆ ϵopt
11 Calculate the budget group user statistic gpp,opt of

ϵ̃′′opt = Unique(ϵ′′opt) by Ur,t.
12 Calculate the potential reporting error

err← err(ϵ̃′′opt, gpp,opt, n, npp,opt, d) by Equation (7);
13 if dis > err then
14 Remove Ur,t from UA, i.e., UA ← UA\Ur,t;
15 Get report Y r,t ← PFO.P(Dt) with privacy budget

list ϵ′′opt from users in Ur,t;
16 Calculate the enhanced report

Ŷ r,t ← PUE(ϵ̃′′opt,Y r,t);
17 Get hr,t,k ← PFO.A(Ŷ r,t) for each group Gk;
18 Calculate f̂r,t ← PFO.E(hr,t, ϵ̃

′′
opt);

19 else
20 Set f̂r,t ← f̂r,t−1;

21 if t ≥ wopt then
22 UA ← UA ∪ Us,t−wopt+1 ∪ Ur,t−wopt+1;

23 return f̂r,t.

The main idea of PLPA+ is to pre-assign an equal popula-
tion share for each time slot and absorb the unused population
from previous time slots, meanwhile nullifying the population



for future time slots. This approach enhances the utility of
the current publication. The process of PLPA+ is shown in
Algorithm 4.

PLPA+ also consists of two sub-mechanisms: Ms,t and
Mr,t, where Ms,t calculates the dissimilarity dis and Mr,t

publishes new estimations. The mechanism Ms,t in PLPA+

is the same as in Algorithm 3.
For Mr,t, PLPA+ calculates the time length tN nullified

by the last time slot tl (Line 4), and checks whether the
current time slot is within this period tN . If it is, the current
publication is approximated by the previous one (Line 6).
Otherwise, PLPA+ compares dis and err to decide whether
to publish a new obfuscated estimation (Line 8–20).

Specifically, PLPA+ calculates the time slot length tA out
of the nullified period tN but not after the current time slot,
determining the maximum length that can be absorbed by the
current time slot. Then, PLPA+ calculates the population size
npp,opt that can be absorbed (Line 9), samples npp,opt users
Ur,t, and calculates the corresponding error err (Line 10–11).
If dis > err, PLPA+ updates the population candidate set
UA (Line 14) and applies PFO enhanced by PUE to publish
a new estimation (Line 15–18). Otherwise, it approximates
the current publication as the previous one (Line 20). Finally,
PLPA+ recycles the population outside the window size wopt

(Line 22).
The process of PLPA+ is illustrated in Example 5.

Example 5. Consider the data in Example 4. At time slot
1, assume PLPA+ consumes population {u1, u2 . . . u333} to
calculate the dissimilarity dis. It calculates the nullified time
length tN = −1. Since t − l = 1 > tN , PLPA+ compares
dis with err to decide whether to publish a new estimation.
Specifically, it calculates tA = 2 and sets npp,opt = 333× 2 =
666. After sampling 666 users Ur,1, it calculates the error
err. Assume Ur,1 = {u334, u335, . . . u999} and dis > err. Then
PLPA+ publishes a new estimation f̂r,1 using enhanced PFO.

At time slot 2, dis calculation still consumes zopt = 333
users Us,2 = {u1000, u1001, . . . u1332}. PLPA+ calculates the
nullified time length tN = 666/333 − 1 = 1. Since t − l =
1 ≤ tN , the current estimation f̂r,2 is approximated as f̂r,1.

At time slot 3, assume there is a new estimation publication.
Then it consumes 333 users Us,3 = {u1333, u1334, . . . , u1665}
for dis calculation. Here, tN = 666/333 − 1 = 1 and tA =
3 − 1 − 1 = 1. Thus, npp,opt is set to 333. After sampling
population Ur,3 = {u1666, u1667, . . . , u1998}, PLPA+ recycles
Us,1 and Ur,1, updating the candidate population set as UA =
{u1, u2, . . . , u999, u1999, u2000}.

The process continues similarly for subsequent time slots.

D. Analysis

Time Complexity Analysis. Let d denote the value domain
size, m the number of budget groups, and n the total number
of users, satisfying m ≤ n. Let zopt be the optimal sampling
size at each time slot, with zopt ≤ n/2. We analyze the time
complexity of PLPD and PLPA as follows.

Theorem V.2. The time complexity of both PLPD+ and
PLPA+ is O(n ·m+ d ·m).

Proof. Please refer to the detailed proof of Theorem V.2 in
Appendix IX-E2 of our report [38].

Privacy Analysis. When the optimal window size wopt is
determined, each user in both PLPD+ and PLPA+ appears at
most once within any wopt size window. For any user ui with a
personalized window size requirement wi > wopt, the privacy
budget ϵi is divided into ⌈wi/wopt⌉ portions, ensuring the total
privacy budget consumption within a wi-length window does
not exceed ϵi. In addition, each estimation is published through
the PFO protocol under ϵ-PLDP. Therefore, the following
theorem holds for the privacy guarantee of both methods.

Theorem V.3. PLPD+ and PLPA+ satisfy (w, ϵ)-EPLDP.

Proof. Please refer to the detailed proof of Theorem V.3 in
Appendix IX-F2 of our report [38].

Utility Analysis. For simplicity, let wopt denote the optimal
window size from the OPS process. We assume that at most
sopt < wopt new publications occur at time slots ρ1, ρ2, . . . ρopt,
without budget absorption from any past time slots outside the
current window. Besides, we assume each new publication cor-
responds to the same count of skipped / nullified publications.
Let ϵ̃opt denote the new privacy budget list after applying OPS,
and ñopt represent the user count list, where ñopt(k) indicates
the number of users requiring privacy budgets ϵ̃opt(k). Let
n̂max(ϵ̃opt) denote the number of users requiring the maximum
privacy budget in ϵ̂opt. Under these definitions, we present the
following two theorems for PLPD+ and PLPA+, respectively.

Theorem V.4. The error upper bound of per time slot

in PLPD+ is 1
d3

(︂
2wopt

n−1 − 1
n−1 + 2woptA

)︂2

+ 4(2sopt−1)
sopt

·(︂
1

n−1 +A
)︂
− 1

n−1 , where A = d−1
n̂max(ϵ̃opt)

· 2emin (ϵ̃opt)+d−2(︂
emin (ϵ̃opt)−1

)︂2 .

Proof. Please refer to the detailed proof of Theorem V.4 in
Appendix IX-G2 of our report [38].

Theorem V.5. The error upper bound of per time slot

in PLPA+ is 1
d3

(︂
2wopt

n−1 − 1
n−1 + 2woptA

)︂2

+ BC · errnlf −
(B+1)C
n−1 +

(︂
sopt

n−1 + sopt ·A
)︂
·
(︁
2− 1

2B+1 + 2
B

)︁
, where A =

d−1
n̂max(ϵ̃opt)

· 2emin (ϵ̃opt)+d−2(︂
emin (ϵ̃opt)−1

)︂2 , B =
wopt−sopt

2sopt
and C =

sopt

wopt
.

Proof. Please refer to the detailed proof of Theorem V.5 in
Appendix IX-G2 of our report [38].

VI. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the performance of our proposed mechanisms. We compare
them against state-of-the-art non-personalized LDP methods
for data steams [3]. In addition, to assess the effectiveness of
the key components OPS and PUE, we perform an ablation
study by selectively removing each module and replacing it
with its corresponding baseline mechanism.



TABLE IV: Experimental settings.
Parameters Values

static privacy budget ϵ 0.5, 1.0, 1.5, 2.0, 2.5
static window size w 40, 80, 120, 160, 200
personalized privacy budget ϵi ϵ, . . . , 2.0, 2.5
personalized window size wi 40, 80, . . . , w
population lower bound nmin 10

A. Datasets

Real Datasets. We employ two real-world datasets, namely
Taxi and Foursquare, to evaluate the performance of our
PLPD+ and PLPA+.

Taxi. This dataset records real-time trajectories of 10, 357
taxis in Beijing from February 2 to February 8, 2008. After
cleaning, 14, 859, 377 valid records from n = 10, 269 taxis are
retained, locations are mapped into d = 5 areas. We sample
the trajectories every minute, resulting in T = 8, 889 time
slots.

Foursquare. This dataset consists of 33, 278, 683 Foursquare
check-ins from 266, 909 users collected between April 2012
and September 2013. We map all venues into d = 5 discrete
categories and convert the data into n = 13, 216 data streams
with T = 7, 649 time slots.
Synthetic Datasets. We generate three synthetic binary data
streams based on different probabilistic sequence models to
evaluate our mechanisms under controlled conditions. Each
stream involves n = 10, 000 users over T = 10, 000 time
slots. At each time step t, each user’s binary value equals 1
with probability pt (and 0 otherwise), where (p1, p2, . . . , pT )
follows the generation rules defined below.

TLNS. In this dataset, the probability evolves dynamically as
pt = pt−1+N (0, Q), where N (0, Q) denotes Gaussian noise
with variance Q and standard deviation

√
Q = 0.0025. The

initial probability is p0 = 0.05, and all pt values are clipped
to the range [0, 1] ( i.e., set pt = 0 if pt < 0 and pt = 1 if
pt > 1) to ensure validity.

Sin. In the Sin dataset, the probability follows a sinusoidal
trend, defined as pt = A sin(ωt) + h, where A = 0.05, ω =
0.01, and h = 0.075.

Log. In the Log dataset, the probability follows a logistic

growth pattern, defined as pt =
A

1 + e−bt
, where A = 0.25

and b = 0.01.

B. Experiment Setup

Compared Algorithms. We compare the enhanced person-
alized methods, PLPD+ and PLPA+, with their basic coun-
terparts: PLPD and PLPA. Additionally, we also compare the
above four personalized solutions with two non-personalized
methods: LDP Budget Distribution (LBD) and LDP Budget
Absorption (LBA) [3]. Each experiment is repeated ten times
using different random seeds ranging from 0 to 9, and we
report the average results.
Parameter Settings. In non-personalized settings (i.e., LBD
and LBA), ϵ and w represent the privacy budget and window
size, respectively. We vary ϵ from 0.5 to 1.5 and w from 40
to 200. Following the Reference [4], we set the lower bound

of all users’ personalized privacy budgets to ϵ and the upper
bound of their personalized window sizes to w.

Table IV summaries all experimental parameters, where
default values are highlighted in bold. All experiments are
conducted in Java on an Intel(R) Xeon(R) Silver 4210R CPU
@ 2.4GHz with 128 RAM.
Performance Metrics. We evaluate each method in terms of
running time and data utility. Data utility is measured as the
Average Mean Square Error (AMSE) and the Average Jensen-
Shannon Divergence [39] (AJSD, D̄JS), defined as follows.

AMSE =
1

T

T∑︂
τ=1

MSEτ =
1

dT

T∑︂
τ=1

d∑︂
j=1

(︂
f̂j,τ − fj,τ

)︂2
.

D̄JS(f̂∥f) =
1

T

T∑︂
τ=1

DJS(f̂∥f) =
1

T

T∑︂
τ=1

(︃
1

2
DKL(f̂∥v) +

1

2
DKL(f∥v)

)︃

=
1

2T

T∑︂
τ=1

d∑︂
j=1

(︄
f̂j,τ log

(︄
f̂j,τ

vj,τ

)︄
+ fj,τ log

(︃
fj,τ

vj,τ

)︃)︄
,

where vj,τ = 1
2

(︂
f̂ j,τ + f j,τ

)︂
.

C. Overall Utility Analysis

Figure 2 presents the publication accuracy of all methods as
the privacy budget ϵ varies. In general, the logarithmic error
ln (AMSE) of all methods decreases as ϵ increases, reflecting
the trade off between privacy and data utility. The absorption-
based methods (i.e., LBA, PLPA, PLPA+) consistently outper-
form their corresponding distribution-based counterparts (i.e.,
LBD, PLPD, PLPD+). This is because the distribution-based
methods distribute population in an exponentially decaying
way in the window, leading to quite larger estimation er-
ror. More over, our personalized mechanisms outperform the
corresponding non-personalized ones in most datasets as ϵ
increases, demonstrating the benefits of personalized methods.
Additionally, our PLPA+ yields the best overall performance
on real datasets, with an average error 47.7% lower than LBA,
while our PLPA performs best on synthetic datasets, reducing
the average error by 47.27% compared with LBA. This differ-
ence arises because when the data dimension d is small, the
advantages of OPS and PUE become less pronounced, leading
PLPA to outperform PLPA+ in low-dimensional synthetic
datasets.

Figure 3 shows the publication accuracy as the window size
w increases. Overall, ln (AMSE) increases with larger w, since
a wider window reduces the number of users contributing
to each time slot. Similar to the previous trend, absorption-
based methods (i.e., LBA, PLPA, PLPA+) still outperform
distribution-based ones (i.e., LBD, PLPD, PLPD+) for the
same reason—exponentially decaying population assignment
results in higher estimation error. More over, our personalized
mechanisms outperform their non-personalized counterparts,
validating the benefit of personalization. Consistent with the
results on ϵ, our PLPA+ achieves the best accuracy on real
datasets, with an average error 38.65% lower than LBA,
whereas our PLPA excels on synthetic datasets, reducing the
average error by 36.5% compared with LBA.
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Fig. 2: AMSE with different ϵ.
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Fig. 3: AMSE with different w.
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Fig. 4: The ablation study of AMSE with different ϵ.
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Fig. 5: The ablation study of AMSE with different w.

D. Ablation Study

To evaluate the contributions of our sub-modules OPS and
PUE, we conduct an ablation study by selectively removing
them. We construct four ablated variants: PLBD-RP, PLBA-
RP, PLBD-OPS and PLBA-OPS. Specifically, PLBD-RP and
PLBA-RP are the enhanced population methods without OPS,
while PLBD-OPS and PLBA-OPS are the enhanced population
methods without PUE.

Figure 4 and Figure 5 compare the accuracy of these
ablated methods with our complete solutions as ϵ and w vary,
respectively. As shown, all methods exhibit similar trends:
the error decreases with larger ϵ and increase with larger
w. Besides, the inclusion of OPS yields substantial accuracy
gains over the basic population methods in most cases and

maintains comparable performance otherwise. Similarly, PUE
also improves accuracy, especially on real datasets where
heterogeneity among users is more evident. When the data
dimension decreases to d = 2, however, the advantage of PUE
diminishes or even reverses—particularly in datasets such as
Sin, where the underlying data exhibit non-stationary variation
rates.

VII. CONCLUSION

In this paper, we propose two basic methods PLPD and
PLPA for Personalized Private Steaming Data Estimation in
Local Setting. To further improve the utility, we propose
two enhanced methods, PLPD+ and PLPA+. We evaluate
these methods against recent non-personalized approaches, to
demonstrate their efficiency and effectiveness.
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[7] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: randomized
aggregatable privacy-preserving ordinal response,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014 (G. Ahn, M. Yung,
and N. Li, eds.), pp. 1054–1067, ACM, 2014.

[8] T. Wang, J. Q. Chen, Z. Zhang, D. Su, Y. Cheng, Z. Li, N. Li, and
S. Jha, “Continuous release of data streams under both centralized and
local differential privacy,” in CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, pp. 1237–1253, 2021.

[9] E. Bao, Y. Yang, X. Xiao, and B. Ding, “CGM: an enhanced mechanism
for streaming data collection with local differential privacy,” Proc. VLDB
Endow., vol. 14, no. 11, pp. 2258–2270, 2021.

[10] Q. Xue, Q. Ye, H. Hu, Y. Zhu, and J. Wang, “DDRM: A continual
frequency estimation mechanism with local differential privacy,” IEEE
Trans. Knowl. Data Eng., vol. 35, no. 7, pp. 6784–6797, 2023.

[11] Q. Ye, H. Hu, K. Huang, M. H. Au, and Q. Xue, “Stateful switch:
Optimized time series release with local differential privacy,” in IEEE
INFOCOM 2023 - IEEE Conference on Computer Communications,
New York City, NY, USA, May 17-20, 2023, pp. 1–10, 2023.

[12] Y. Mao, Q. Ye, H. Hu, Q. Wang, and K. Huang, “Privshape: Extracting
shapes in time series under user-level local differential privacy,” in
40th IEEE International Conference on Data Engineering, ICDE 2024,
Utrecht, The Netherlands, May 13-16, 2024, pp. 1739–1751, IEEE,
2024.

[13] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias, “Differentially
private event sequences over infinite streams,” Proc. VLDB Endow.,
vol. 7, no. 12, pp. 1155–1166, 2014.

[14] M. Alaggan, S. Gambs, and A. Kermarrec, “Heterogeneous differential
privacy,” J. Priv. Confidentiality, vol. 7, no. 2, 2016.

[15] I. Kotsogiannis, S. Doudalis, S. Haney, A. Machanavajjhala, and
S. Mehrotra, “One-sided differential privacy,” in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April
20-24, 2020, pp. 493–504, IEEE, 2020.

[16] D. Kifer and A. Machanavajjhala, “Pufferfish: A framework for mathe-
matical privacy definitions,” ACM Trans. Database Syst., vol. 39, no. 1,
pp. 3:1–3:36, 2014.

[17] X. He, A. Machanavajjhala, and B. Ding, “Blowfish privacy: tuning
privacy-utility trade-offs using policies,” in International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014 (C. E. Dyreson, F. Li, and M. T. Özsu, eds.), pp. 1447–1458, ACM,
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Algorithm 5: PLDP Population Distribution
Input: Available user set UA, privacy requirement (w, ϵ) of

all Users U , dataset Dt data domain size d, historical
data publication (f̂1, f̂2, . . . , f̂ t-1)

Output: f̂ t

1 Calculate the distinct privacy budget ϵ̃ with the statistic g;
2 Get the maximal window size wmax = max(w);
// sub-mechanism Ms,t

3 Calculate the minimal sampling size zmin ← ⌊n/(2wmax)⌋;
4 Sample users Us,t from UA with the size of zmin and remove

Us,t from UA, i.e., UA = UA\Us,t;
5 Get report Y t ← PFO.P(Dt) with privacy budget list ϵ from

users in Us,t;
6 Get the combination hs,t ← PFO.A(Y t);
7 Estimate f̂ s,t ← PFO.E(hs,t, ϵ);
8 Calculate

dis← 1
d

∑︁d
j=1

(︂
f̂ s,t[j]− f̂ l[j]

)︂2

− 1
d

∑︁d
j=1 Var

[︂
f̂ s,t[j]

]︂
;

// sub-mechanism Mr,t

9 Calculate the minimal remaining population size
nr,min = n/2−

∑︁t−1
τ=t−wmax+1 |Ur,τ |;

10 Set the minimal number of potential publication users
npp,min = ⌊nr,min/2⌋;

11 Calculate the potential reporting error
err← err(ϵ̂, g, n, npp,min, d) by Equation (7);

12 if dis > err and npp,min ≥ nmin then
13 Sample a user set Ur,t from UA with the size of

|Ur,t| = npp,min and remove Ur,t from UA, i.e.,
UA ← UA\Ur,t;

14 hr,t ← Users in Ur,t report via an PFO.P with privacy
budget list ϵ;

15 Calculate f̂ r,t ← PFO.E(hr,t, ϵ);

16 else
17 Set f̂ r,t ← f̂ r,t-1;

18 if t ≥ wmax then
19 UA ← UA ∪ Us,t−wmax+1 ∪ Ur,t−wmax+1;

20 return f̂ r,t.

[39] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, pp. 145–151, 1991.

IX. APPENDIX

A. Process of PLPD and PLPA

We introduce the process of PLPD and PLPA for subsec-
tion IV-C as follows.

PLDP Population Distribution. PLPD takes an available
user set UA, the privacy requirement (w, ϵ) of all users, the
value domain d and historical publications as input. PLPD
starts with a total population (UA = U ) and executes three
steps: (1) calculates a fixed population per time slot; (2)
distributes publication population in an exponential decreasing
fashion; (3) recycles the population spent in time slots falling
outside the activate window. Algorithm 5 shows the details of
PLPD.

PLPD first gets different privacy budgets’ statistic which is
used for PFO. It finds the max window size wmax and calculate
the minimal population average share zmin which ensures the
total population spent within any window is not large than
the total population U . PLPD samples zmin size of population

Us,t (Line 4) and executes PFO using Us,t (Line 5 and Line 7)
to get the estimation frequency of current data. It then uses
these estimation to calculate the private dissimilarity (Line 8).
Rather than directly calculating new reporting by spending half
of the remaining population, PLPD first calculates the new
reporting error without any population spent (Lines 9–11). It
judges whether the dissimilarity is larger than the error. If so, it
spends the population and reports new estimation (Lines 14–
15). Otherwise, it sets the current estimation as the before
estimation. Finally, PLPD recycles the population that spent
for private dissimilarity calculation and new estimation at time
slot t − wmax + 1. We give an example for the procedure of
PLPD in Example 6.

Example 6. Consider a scenario with 5 two-by-two
connected locations {A,B,C,D,E} and 1000 users
u1, u2, . . . , u1000. These users have privacy requirements in
domain {0.2, 0.4, 0.6, 0.8} and window size requirements
in domain {1, 2, 3, 4}. From this, we can determine
that the input and output domain size is d = 5. The
distinct privacy budget vector is ϵ̃ = ⟨0.2, 0.4, 0.6, 0.8⟩,
with probability vectors q̃ = ⟨0.19, 0.18, 0.17, 0.16⟩ and
p̃ = ⟨0.23, 0.27, 0.31, 0.36⟩. The corresponding statistic
vector of ϵ̃ is g = ⟨0.35, 0.25, 0.25, 0.15⟩. The maximum
window size is wmax = 4, and the minimum sampling size is
zmin = ⌊1000/(2× 4)⌋ = 125.

At time slot 1, the available user set UA is set to
U . It samples 125 users. Assume these 125 users are
Us,1 = {u1, u2, . . . , u125}. Then UA is updated as UA =
UA\Us,1 = {u126, u127, . . . , u1000}. Users in Us,1 report
their obfuscated locations using PFO.P. Assume the ob-
fuscated frequency is hs,1 = ⟨0.22, 0.2, 0.18, 0.22, 0.18⟩.
We can then obtain the estimation by Equation (1) as
f̂ s,1 = ⟨0.396, 0.2, 0.004, 0.396, 0.004⟩ with variance sum as∑︁d
j=1 Var

[︂
f̂ s,t[j]

]︂
= 0.606. Next, we calculate the dissim-

ilarity dis = 0.185. The potential publication user number
npp,min =

⌊︁
n
2 /2

⌋︁
= 250. Thus, we can calculate err = 0.061.

Since dis > err, the system continues to sample 250 users
from UA for a new publication. Assume the sampling set
is Ur,1 = {u126, u127, . . . , u375}. These users report their
obfuscated locations using PFO.P. Assume the obfuscated
frequency is hr,1 = ⟨0.23, 0.19, 0.19, 0.21, 0.18⟩. We can then
get the estimation as f̂ r,1 = ⟨0.494, 0.102, 0.102, 3.00, 0.04⟩.
Because there are no users for historical publications out of
window size wmax (i.e., t < wmax), UA remain unchanged.

At time slot 2, it still samples 125 users from UA
for dis calculation. Assume these 125 users are Us,2 =
{u376, u377, . . . , u500}. Then the available user set is updated
as UA = UA\Us,2 = {u501, u502, . . . , u1000}. The system still
calculates the minimum remaining population size nr,min =
1000/2 − 250 = 250. Then, it calculates the potential pub-
lication user number npp,min = ⌊nr,min/2⌋ = 125 and err.
Assume dis > err, it continues to sample npp,min = 125
users for a new publication. Assume the sampling user set
is Ur,2 = {u501, u502, . . . , u625}. Then, the available user set is



updated as UA = UA\Ur,2 = {u626, u627, . . . , u1000}. It then
reports a new publication f̂ r,2.

Assume there are no new publications from time slot
3 (i.e., dis ≤ err and f̂ r,3 = f̂ r,2). The system still
consumes zmin = 125 population for dissimilarity cal-
culation. Assume the consumed population set is Ur,3 =
{u626, u627, . . . , u750}. At time slot 4, the available user set is
UA = {u751, u752, . . . , u1000}. The system samples zmin = 125
users for dissimilarity calculation. Assume the sampling user
set is Us,4 = {u751, u752, . . . , u875}. Then UA is updated
as UA = {u876, u877, . . . , u1000}. Assume dis > err. The
system calculates the minimum remaining population size
nr,min = 1000/2 − (250 + 125) = 125 and samples npp,min =
⌊npp,min/2⌋ = 62 users for new publication. Assume these
62 users are Ur,4 = {u876, u877, . . . , u937}. It then reports a
new publication f̂ r,4. Additionally, it recycles the population
consumption from time slot 1, specifically, UA = UA ∪ Us,1 ∪
Ur,1 = {u1, u2, . . . , u375, u938, u939, . . . , u1000}.

The process repeats in a similar fashion for subsequent time
slots.

PLDP Population Absorption. PLPD performs well for
steams with frequent but gradual changes. However, it be-
comes less effective when dealing with steams that changes
that change infrequently but dramatically. To address this
scenario, we propose PLDP Population Absorption (PLPA).

Algorithm 6 shows the process of PLPA. In PLPA, like
PLPD, it calculates the statistics g of distinct privacy budget
ϵ̃ and the maximum window size wmax among all users. The
process of dissimilarity calculation remains the same as in
PLPD. However, the population allocation method is different.
In PLPA, it first pre-allocates to ⌊n/(2wmax)⌋ population at
each time slot. This population value, called unit population,
is the smallest allocation and cannot be further divided. Each
unit population can be nullified by predecessors or absorbed
by successors within the wmax window. However, the average
population consumption across each wmax period is not allowed
to exceed the unit population.

Especially, for error calculation, the system first determines
the current nullified tN , which represents the number of con-
secutive time slots—from l+1 to l+ tN—whose populations
are nullified by the last new publication time slot l. These tN
population resources are marked as null. PLPA checks whether
the current time slot t is before l + tN (Line 5). If so, the
population at time slot t is remains nullified and needs to be
skipped (Line 6). Otherwise, it calculates the number of time
slot tA that can be absorbed from l+ tN +1 to t (Line 8) and
absorbs them to increase the current population (Line 9). The
error calculation (Line 10) and dissimilarity-error comparison
process (Lines 11–16) follow the same approach as in PLPD.
Finally, PLPA recycles the historical population at time slot
t− wmax + 1.

We give an example for PLPA as follows.

Example 7. Assume the users are the same in Example 6.
At time slot 1, PLPA spends Us,1 = {u1, u2, . . . , u125} in
calculating the dissimilarity dis = 0.185. It then gets the

Algorithm 6: PLDP Population Absorption
Input: Available user set UA, privacy requirement (w, ϵ) of

all Users U , data domain size d, historical data
publication (f̂1, f̂2, . . . , f̂ t-1)

Output: f̂ t

1 Calculate the distinct privacy budget ϵ̃ with the statistic g;
2 Get the maximal window size wmax = max(w);
// sub-mechanism Ms,t

3 The same as Line 3-8 in Algorithm 5;
// sub-mechanism Mr,t

4 Calculate the nullified tN =

⃓⃓
Ur,l

⃓⃓
⌊n/(2wmax)⌋ − 1;

5 if t− l < tN then
6 f̂ t ← f̂ t-1;

7 else
8 Calculate time slots that can be absorbed

tA = t− l − tN ;
9 Set the number of potential publication users

npp,min ← ⌊n/(2wmax)⌋ ·min(tA, wmax);
10 Calculate the potential reporting error err by

Equation (7);
11 if dis > err then
12 Sample a user set Ur,t from UA with the size of

|Ur,t| = npp,min and remove Ur,t from UA, i.e.,
UA ← UA\Ur,t;

13 hr,t ← Users in Ur,t report via an PFO.P with
privacy budget list ϵ;

14 Calculate f̂ r,t ← PFO.E(hr,t, ϵ);

15 else
16 Set f̂ r,t ← f̂ r,t-1;

17 if t ≥ wmax then
18 UA ← UA ∪ Us,t−wmax+1 ∪ Ur,t−wmax+1;

19 return f̂ r,t.

user set |Ur,l| = 0 consumption for publication at the last
time l = 0 and calculates the nullified tN = −1. Because
t− l = 1 > tN , PLPA calculates tA = t− l − tN = 2, which
mean the new publication can consume two shares of popula-
tions. It calculate the two share population quantity npp,min =
⌊1000/(2 × 4)⌋ × 2 = 250 and the potential reporting error
err = 0.03. Because dis > err, PLPA samples a user set |Ur,1|
of size 250 from UA. Assume |Ur,1| = {u126, u127, . . . , u375}.
PLPA reports a new publication consuming |Ur,1|.

At time slot 1, assume the sampling 125 users for dis-
similarity calculation is Us,2 = {u376, u377, . . . , u500}. Thus
the available user set is updated as UA = UA\Us,2 =
{u500, u501, . . . , u1000}. The nullified tN = 250

1000/(2×4) = 2,
which is larger than t− l = 1. Thus, PLPA approximates the
current publication f̂2 as the last publication f̂1.

The process repeats in a similar way for subsequent time
slots.

B. More Details for Modified Personalized Frequency Oracle
Theorems

Theorem IX.1. GPRR is Φ-PLDP and f̂ j =
∑︁m
k=1 αk ·

hk,j−q̃k
p̃k−q̃k

is an unbiased aggregation of fj for all ωj ∈ Ω.



Proof. For any two input xi, x′i ∈ Ω of ui with the output
yi ∈ Ω, we have

Pr[M(xi) = yi]

Pr[M(x′
i) = yi]

≤
pi

qi
= e

ϵi . (9)

Thus, GPRR is Φ-PLDP.
For any expectation f̂ j ∈ f̂ of fj ∈ f , we have

E
[︂
f̂j

]︂
= E

[︄
m∑︂

k=1

αk ·
hk,j − q̃k
p̃k − q̃k

]︄

= E
[︄

m∑︂
k=1

αk ·
fj · p̃k + (1 − fj)q̃k − q̃k

p̃k − q̃k

]︄

= E
[︄
fj ·

m∑︂
k=1

αk

]︄
= fj .

Thus, f̂ j is an unbiased estimation of fj .

Theorem IX.2. For any Φ-PLDP mechanism with Φ : U → E
independent of Ω, and any p̃k ∈ p̃, q̃k ∈ q̃ with 1

d < p̃k ≤ 1

and q̃k = 1−p̃k
d−1 , the variance of the j-th frequency estimation

f̂ j ∈ f̂ in Equation (1) is

Var
[︂
f̂j

]︂
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

VA,j = 1
m∑︁

k=1
1/(λk+µk·fj)

, if αk =
1/ Var

[︂
f̂k,j

]︂
m∑︁

k′=1

1/ Var
[︂
f̂
k′,j

]︂ ,

VB,j =

m∑︁
k=1

(λk+µk/d)
(λk+µk·fj)

2(︄
m∑︁

k=1
1/(λk+µk/d)

)︄2 , if αk =
1/ Vara

[︂
f̂k,j

]︂
m∑︁

k′=1

1/ Vara
[︂
f̂
k′,j

]︂ ;
(10)

Besides, the upper bound of
∑︁d
j=1 VA,j and the lower bound

of
∑︁d
j=1 VB,j are both

Var
[︂
f̂
]︂
= 1/

m∑︂
k=1

n/ (dλk + µk) , (11)

where λk = q̃k(1−q̃k)
gk(p̃k−q̃k)2

and µk = 1−p̃k−q̃k
gk(p̃k−q̃k)

.

Proof. For any random variable ĥj ∈ h, it is the average
of n independent random variables drawn from the Bernoulli
distribution. More specifically, fjgkn of these random vari-
ables are drawn from the Bernoulli distribution with parameter
p̃k. Besides, (1 − gk)fjn of these variables are drawn from
the Bernoulli distribution with parameter q̃k. Thus, if setting

αk =
1/Var

[︂
f̂k,j
]︂

∑︁m
k′=1

1/Var
[︂
f̂k’,j

]︂ , then

Var
[︂
f̂j

]︂
=

m∑︂
k=1

α
2
k · Var

[︂
f̂k,j
]︂

=
m∑︂

k=1

⎛⎝ 1/Var
[︂
f̂k,j
]︂

∑︁m
i=1 1/Var

[︂
f̂ i,j
]︂
⎞⎠2

· Var
[︂
f̂k,j
]︂

=

m∑︁
k=1

1/Var
[︂
f̂k,j
]︂

(︃
m∑︁

i=1
1/Var

[︂
f̂ i,j
]︂)︃2

=
1

m∑︁
k=1

1/Var
[︂
f̂k,j
]︂

=1/

m∑︂
k=1

1/
(︂
λk + µk · fj

)︂
;

(12)

If setting αk =
1/Var

[︂
f̂k,j
]︂

∑︁m
k′=1

1/Var
[︂
f̂k’,j

]︂ , then

Var
[︂
f̂j

]︂
=

m∑︂
k=1

α
2
k · Var

[︂
f̂k,j
]︂

=
m∑︂

k=1

⎛⎝ 1/Var
[︂
f̂k,j
]︂

∑︁m
i=1 1/Var

[︂
f̂ i,j
]︂
⎞⎠2

· Var
[︂
f̂k,j
]︂

=

m∑︁
k=1

Var
[︂
f̂k,j
]︂
/
(︂

Var
[︂
f̂k,j
]︂)︂2

(︃
m∑︁

i=1
1/Var

[︂
f̂ i,j
]︂)︃2

=

∑︁m
k=1

(︁
λk + µk/d

)︁
/
(︂
λk + µk · fj

)︂2

(︁∑︁m
k=1 1/

(︁
λk + µk/d

)︁)︁2

(13)

For Equation (12), let ϕ(x) = Var [x] = 1∑︁
k

1
λk+µkx

, then we

have:
d∑︂

j=1

VA,j =
d∑︂

j=1

ϕ
(︂
f̂j

)︂
=

1

m
H
(︂
λ1 + µ1fj, λ2 + µ2fj, . . . , λm + µmfj

)︂
,

where H is the harmonic average.

From Equation (10) and (11), we can see the upper bound
of

∑︁d
j=1 VA,j is independent of fj .

Because λk + µkfj > 0,
∑︁d
j=1 VA,j is a concave function.

As
∑︁

j fj = 1, according to Jensen’s inequality, we have:

d∑︂
j=1

VA,j =
d∑︂

j=1

ϕ(f̂ j) ≤ d · ϕ
(︃

1

d

)︃
= d ·

1∑︁m
k=1

1
λk+µk/d

=
1∑︁m

k=1
1

dλk+µk

.

The equal sign holds when f1 = f2 = · · · = fd = 1
d .

For Equation (13), let ψ(x) =
∑︁m
k=1

λk+µk/d

(λk+µkfj)
2 , then we

have:
d∑︂

j=1

VB,j =
d∑︂

j=1

ψ(f̂ j) =
1(︃∑︁m

k=1
1

λk+µk/d

)︃2

d∑︂
j=1

m∑︂
k=1

λk + µk/d(︂
λk + µkfj

)︂2
.

Because ψ(x) is a decreasing convex function, according to
Jensen’s inequality, we have
d∑︂

j=1

VB,j =
d∑︂

j=1

ψ(fj) ≥ d · ψ
(︃

1

d

)︃
= d ·

1∑︁m
k=1

1
λk+µk/d

=
1∑︁m

k=1
1

dλk+µk

.

The equal sign holds when f1 = f2 = · · · = fd = 1
d .

C. More Details for Dissimilarity

Private Dissimilarity. The ideal method of strategy determi-
nation is using non-private dissimilarity dis∗ for comparison.
The expression of non-private dissimilarity is defined as the
mean square error between the

dis∗ =
1

d

d∑︂
j=1

(ft[j]− f̂ l[j])
2
, (14)

where f̂ l represents the previous frequency publication that
consumes population resources. However, dis∗ as an inter-
mediate result leads to privacy leakage. To overcome this
limitation, we use a private dissimilarity dis instead. The
design of dis has two requirements: (1) dis needs to be
private, meaning that given a privacy requirement Φ for dis



calculation, it needs to achieve Φ-PLDP; (2) dis needs to be
an unbiased estimation of the non-private dissimilarity dis∗,
ensuring accurate results.

Theorem IX.3. Let f̂s,t denote the unbiased frequency esti-
mation of f t from an Φ-PLDP frequency estimation mecha-
nism Ms,t at current time slot t. Then the following dissimi-
larity measure

dis =
1

d

d∑︂
j=1

(︂
f̂s,t[j] − f̂ l[j]

)︂2
−

1

d

d∑︂
j=1

Var
[︂
f̂s,t[j]

]︂
(15)

is Φ-PLDP and an unbiased estimation of dis∗ in Equa-
tion (14).

Proof. We first prove (1) dis in Equation (15) is Φ-PLDP
(Privacy Proof ) and then prove (2) dis in Equation (15) is an
unbiased estimation of dis∗ in Equation (14) (Unbiasedness
Proof ).

Privacy Proof. The calculation of dis is only related to
{y1, . . . , yn} of all users, which is published utilizing GRR.
Thus, According to Theorem IX.1, we get dis is Φ-PLDP.

Unbiasedness Proof. Since f̂s,t is an unbiased estimation
of f t, for any f̂s,t[j] ∈ f̂s,t and f t[j] ∈ f t, we have

E
[︂
f̂s,t[j]

]︂
= ft[j].

Besides, for any random variable X and constant C, according
to Var [X] = E

[︁
(X − E [X])2

]︁
= E

[︁
X2

]︁
− E [X]

2, we have

Var [X] = E
[︂
(X − E [X])

2
]︂

= E
[︂
((X − C) − (E [X] − C))

2
]︂

= E
[︂
(X − C)

2
]︂
− (E [X] − C)

2
.

Since last reporting value f̂ l has been a constant for the current
value f̂s,t, thus, we have

Var
[︂
f̂s,t[j]

]︂
= E

[︃(︂
f̂s,t[j] − f̂ l[j]

)︂2
]︃
−
(︂
ft[j] − f̂ l[j]

)︂2
.

Therefore,

E
[︃(︂

f̂s,t[j] − f̂ l[j]
)︂2
]︃
=
(︂
ft[j] − f̂ l[j]

)︂2
+ Var

[︂
f̂s,t[j]

]︂
.

Hence, the expectation of dis in Equation (15) satisfies

E [dis]

=E

⎡⎣ 1

d

d∑︂
j=1

(︂
f̂s,t[j] − f̂ l[j]

)︂2
−

1

d

d∑︂
j=1

Var
[︂
f̂s,t

]︂⎤⎦
=

1

d

d∑︂
j=1

E
[︃(︂

f̂s,t[j] − f̂ l[j]
)︂2
]︃
−

1

d

d∑︂
j=1

Var
[︂
f̂s,t

]︂

=
1

d

d∑︂
j=1

(︃(︂
ft[j] − f̂ l[j]

)︂2
+ Var

[︂
f̂s,t[j]

]︂)︃
−

1

d

d∑︂
j=1

Var
[︂
f̂s,t

]︂

=
1

d

d∑︂
j=1

(︂
ft[j] − f̂ l[j]

)︂2

=dis
∗
.

D. Proof of the Theorem for Re-Perturbation (Theorem V.1)

Proof. Let FPH and FPL be the sub-mechanisms in GPRR with
privacy budget ϵH and ϵL, respectively. Then, we have

∀y ∈ Y,Pr [FPH(x) = y] =

{︄
pH, if y = x,

qH =
1−pH
d−1 , otherwize,

and
∀y ∈ Y,Pr [FPL(x) = y] =

{︄
pL, if y = x,

qL =
1−pL
d−1 , otherwize.

For any re-perturbed value Y ′, we have the transformation
probability relationship shown in Figure 6.

Fig. 6: Probability for perturbation and re-perturbation.

Thus, ∀y′1, y′2 ∈ Y ′, we have:
Pr
[︁
M(x) = y′1

]︁
Pr
[︁
M(x) = y′2

]︁
=

∑︁
y∈Y Pr [FP(x) = y] · Pr

[︁
RP(y) = y′1

]︁∑︁
y∈Y Pr [FP(x) = y] · Pr

[︁
RP(y) = y′2

]︁
≤

pH · β + (d− 1) · qH · γ
pH · γ + ·qH · β + (d− 2) · qH · γ

=
pH · dpL−pL+pH−1

dpH−1 + (d− 1) · 1−pH
d−1 · pH−pL

dpH−1

pH · pH−pL
dpH−1 + · 1−pH

d−1 · dpL−pL+pH−1
dpH−1 + (d− 2) · 1−pH

d−1 · pH−pL
dpH−1

=
(d− 1)(dpHpL − pL)

(pH + d− 2)(pH − pL) + (1 − pH)(dpL − pL + pH − 1)

=
(d− 1)pL(dpH − 1)

(dpH − 1)(1 − pL)

=
pL

1−pL
d−1

=
pL

qL

=e
ϵL .

Therefore, after the re-perturbing process, it still satisfies ϵL-
LDP.

Noted that FPL satisfies ϵL-LDP. According to Refer-
ence [25], we can calculate FPL’s variance with zL users is

VarL(zL) =
1

z2L
·

d∑︂
j=1

(︃
zLqL(1 − qL)

(pL − qL)
2

+
zL(1 − pL − qL)

pL − qL
· fj

)︃

=
dqL(1 − qL)

zL (pL − qL)
2
+

1 − pL − qL

zL(pL − qL)

After re-perturbing, the variance becomes
dqL(1 − qL)

(zL + zH) (pL − qL)
2
+

1 − pL − qL

(zL + zH) (pL − qL)

Therefore the improvement is
∆(Var) = VarL(zL) − VarL(zL + zH)

=
zH

zL (zL + zH)

(︃
dqL(1 − qL)

(pL − qL)
2

+
1 − pL − qL

pL − qL

)︃
.



E. Proofs of Theorems for Time Complexity

1) Proof of Theorems IV.1:

Proof. The time complexities of PFO.P, PFO.A and PFO.E
are O(zmin), O (zmin + d ·m) and O(d · m), respectively.
Additionally, the time complexity of dis calculation is O(d).
Therefore, the overall time complexity of sub-mechanism
Ms,t is O (zmin + d ·m) for both PLPD and PLPA .

For sub-mechanism Mr,t in PLPD, the sampling size is
at most n/4. Thus, the time complexity for counting distinct
elements in ϵ̃ is O(n). The time complexity of the FO is
O(n+ d ·m). Thus, the time complexity of Mr,t in PLPD is
O(n+d ·m). For sub-mechanism Mr,t in PLPA, the sampling
size is at most max (⌊n/(2wmax)⌋) · wmax = n/2. Hence, the
time complexity of Mr,t in PLPA is also O(n+ d ·m).

Consequently, the time complexity for both PLPD and PLPA
is O(n+ d ·m).

2) Proof of Theorems V.2:

Proof. The time complexity of OPS is O (m · n) in both
PLPD+ and PLPA+. Since OPS is executed only once at the
beginning of the process, its impact is minimal in subsequent
steps.

The time complexity of PUE is O
(︁
m2

)︁
. After applying

PUE, the sampling size increases from z to at most z · m.
The time complexities of PFO.P, PFO.A and PFO.E are
O(zopt), O (zopt ·m+ d ·m) and O(d ·m), respectively. Addi-
tionally, the time complexity of dis calculation is O(d). There-
fore, the overall time complexity of sub-mechanism Ms,t is
O
(︁
m2 + zopt ·m+ d ·m

)︁
for both PLPD+ and PLPA+ .

For sub-mechanism Mr,t in PLPD+, the sampling size is
at most n/4. Thus, the time complexity for counting distinct
elements in ϵ̃′′opt is O(n). The time complexity of the enhanced
PFO is O(n ·m+ d ·m). Thus, the time complexity of Mr,t

in PLPD+ is O(n · m + d · m). For sub-mechanism Mr,t

in PLPA+, the sampling size is at most max (⌊n/(2wopt)⌋) ·
wopt = n/2. Hence, the time complexity of Mr,t in PLPA+

is also O(n ·m+ d ·m).
Consequently, the time complexity for both PLPD+ and

PLPA+ is O(n ·m+ d ·m).

F. Proofs of Theorems for Privacy Analysis

According to relationship between the definitions of (w, ϵ)-
EPLDP, ϵ-PLDP, we have the following important three
lemmas for privacy analysis.

Lemma IX.1. Given any window size w ∈ N+, a mechanism
M satisfies (w · 1, ϵ)-EPLDP if it satisfies ϵ-PLDP in any
window of size w.

Proof. Let St and Ŝt be any w-neighboring stream prefixes.
If St = Ŝt, then for any user ui ∈ U , it is obvious that
Pr [M (St)] ≤ eϵ(ui) · Pr

[︂
M

(︂
Ŝt

)︂]︂
. Otherwise, we can find

τ1, τ2 ∈ [t] satisfying τ2−τ1+1 ≤ w, with St[τ1] ̸= Ŝt[τ1] and
St[τ2] ̸= Ŝt[τ2], meanwhile for any τ ∈ [1, τ1−1]∪ [τ2+1, t]
it satisfies St[τ ] = Ŝt[τ ], and for any τ ∈ [τ1, τ2], it satisfies
St[τ ] and Ŝt[τ ] are neighboring.

Let ϵ̃ = Unique(ϵ) be the unique ϵ among all users. Let m
be the number of ϵ̃. For any two w length sub-stream segments
Sτ−w+1,τ and Ŝτ−w+1,τ satisfying τ −w+1 ≤ τ1 ≤ τ2 ≤ τ ,
since M satisfies ϵ-PLDP within any w window, then for any
personalized subset-stream segment S(k)

τ−w+1,τ ⊆ Sτ−w+1 and

Ŝ
(k)

τ−w+1,τ ⊆ Sτ−w+1 we have ∀y ∈ Range(M),

Pr
[︂
M
(︂
S

(k)
τ−w+1,t

)︂
= y

]︂
≤ e

ϵ(ui) Pr
[︂
M
(︂
Ŝ

(k)
τ−w+1,τ

)︂
= y

]︂
.

Therefore, for any personalized stream prefix S
(k)
t ⊆

St, Ŝ
(k)

t ⊆ Ŝt and ∀y ∈ Range(M) with y =
y1:τ−w∥yτ−w+1,τ∥yτ,t, we have

Pr
[︂
M
(︂
S

(k)
t

)︂
= y

]︂
Pr
[︂
M
(︂
Ŝ

(k)
t

)︂
= y

]︂
≤

Pr
[︂
M
(︂
S

(k)
1,τ−w

)︂
= y1,τ−w

]︂
Pr
[︂
M
(︂
Ŝ

(k)
1,τ−w

)︂
= y1,τ−w

]︂ ×
Pr
[︂
M
(︂
S

(k)
τ−w+1,τ

)︂
= yτ−w+1,τ

]︂
Pr
[︂
M
(︂
Ŝ

(k)
τ−w+1,τ

)︂
= yτ−w+1,τ

]︂
×

Pr
[︂
M
(︂
S

(k)
τ+1,t

)︂
= yτ+1,t

]︂
Pr
[︂
M
(︂
Ŝ

(k)
τ+1,t

)︂
= yτ+1,t

]︂
=

Pr
[︂
M
(︂
S

(k)
τ−w+1,τ

)︂
= yτ−w+1,τ

]︂
Pr
[︂
M
(︂
Ŝ

(k)
τ−w+1,τ

)︂
= yτ−w+1,τ

]︂
≤eϵ(ui).

Therefore, M satisfies (w · 1, ϵ)-EPLDP.

Lemma IX.2. A mechanism M satisfies (w, ϵ)-EPLDP if it
satisfies (max (w) · 1, ϵ)-EPLDP.

Proof. For any user ui with ϵ(ui) = ϵk and w(ui) = wk,
let S(k)

t , Ŝ
(k)

t ⊆ St be any pair of wk-neighboring stream
prefixes. If S

(k)
t = Ŝ

(k)

t , then it is evident that ∀y ∈
Range(M),Pr

[︂
M

(︂
S
(k)
t

)︂
= y

]︂
≤ eϵk ·Pr

[︂
M

(︂
Ŝ
(k)

t

)︂
= y

]︂
.

Otherwise, there exists τ1, τ2 ∈ [t] satisfying τ2−τ1+1 ≤ wk
with St[τ1] ̸= Ŝt[τ1] and St[τ2] ̸= Ŝt[τ2]. Because wk ≤
max (w), then we can choose τ ′1 ∈ [1, τ1], τ

′
2 ∈ [τ2, t] with

τ ′2 − τ ′1 + 1 = max (w). Thus S(k)
t ∼max (w) Ŝ

(k)

t . Because
M satisfies (max (w) · 1, ϵ)-EPLDP, then ∀y = Range(M),
we have

Pr
[︂
M
(︂
S

(k)
t

)︂
= y

]︂
≤ e

ϵk · Pr
[︂
M
(︂
Ŝ

(k)
t

)︂
= y

]︂
,

Therefore, M satisfies (w, ϵ)-EPLDP.

Lemma IX.3. A mechanism M satisfies (w, ϵ)-EPLDP if for
any window size ŵ ∈ [min (w),max (w)], M satisfies (ŵ ·
1, ϵ̂)-EPLDP where

ϵ̂(ui) =

{︄
ϵ(ui), if w(ui) ≤ ŵ,

ϵ(ui)/ ⌈w(ui)/ŵ⌉ , otherwize.

Proof. All users can be classified into two cases: (1) the users
whose window sizes are no more than ŵ; (2) the users whose
window sizes are larger than ŵ.

For any user ui in case (1), it satisfies w(ui) = wk ≤
ŵ. Then ∀S(k)

t , Ŝ
(k)

t with S
(k)
t ∼wk

Ŝ
(k)

t , we have S(k)
t ∼ŵ



Ŝ
(k)

t . Because M satisfies (ŵ · 1, ϵ̂)-EPLDP , we have ∀y ∈
Range(M),

Pr
[︂
M
(︂
S

(k)
t

)︂
= y

]︂
Pr
[︂
M
(︂
Ŝ

(k)
t

)︂
= y

]︂ ≤ e
ϵ̂(ui) = e

ϵ(ui).

For any user ui in case (2), it satisfies w(ui) = wk >

ŵ. Let S(k)
t , Ŝ

(k)

t be any two personalized stream prefixes
satisfying St ∼wk

Ŝt. If S
(k)
t = Ŝ

(k)

t , then it is obvi-
ous that Pr

[︂
M

(︂
S
(k)
t

)︂
= y

]︂
/Pr

[︂
M

(︂
Ŝ
(k)

t

)︂
= y

]︂
= 1 ≤

eϵ(ui). Otherwise, we can find τ1, τ2 satisfying τ2 − τ1 +

1 ≤ wk, S
(k)
t [τ1] ̸= Ŝ

(k)

t [τ1], S
(k)
t [τ2] ̸= Ŝ

(k)

t [τ2] and
∀τ ∈ [1, τ1 − 1] ∪ [τ2 + 1, t], S

(k)
t [τ ] = Ŝ

(k)

t [τ ]. Let
z = ⌈wk/ŵ⌉, then we can construct a list of z − 1

stream prefixes Š =
⟨︂
Š
(k,1)

t , Š
(k,2)

t , . . . , Š
(k,z−1)

t

⟩︂
satisfying

S
(k)
t ∼ŵ Š

(k,1)

t , Š
(k,z−1)

t ∼ŵ Ŝ
(k)

t and ∀j ∈ [2, z − 1],
Š
(k,j−1)

t ∼ŵ Š
(k,j)

t . By adding S
(k)
t to the head of Š and

Ŝ
(k)

t to tail, we can get the extended list of z + 1 stream
prefixes Š

+
=

⟨︂
S
(k)
t , Š

(k,1)

t , Š
(k,2)

t , . . . , Š
(k,z−1)

t , Ŝ
(k)

t

⟩︂
. For

any neighboring pair prefixes x, x′ in Š
+

, because M satisfies
(ŵ · 1, ϵ̂)-EPLDP, we have ∀y ∈ Range(M),Pr[M(x) =
y]/Pr[M(x′) = y] ≤ eϵk/z . Therefore, for ∀y ∈ Range(M),
we have

Pr
[︂
M
(︂
S

(k)
t

)︂
= y

]︂
Pr
[︂
M
(︂
Ŝ

(k)
t

)︂
= y

]︂
=

Pr
[︂
M
(︂
S

(k)
t

)︂
= y

]︂
Pr
[︂
M
(︂
Š

(k,1)
t

)︂
= y

]︂ ×
z−1∏︂
j=2

Pr
[︂
M
(︂
Š

(k,j−1
t

)︂
= y

]︂
Pr
[︂
M
(︂
Š

(k,j)
t

)︂
= y

]︂
×

Pr
[︂
M
(︂
Š

(k,z−1)
t

)︂
= y

]︂
Pr
[︂
M
(︂
Ŝ

(k)
t

)︂
= y

]︂
≤eϵk/z ×

(︂
e
ϵk/z

)︂z−2
× e

ϵk/z

=e
ϵk

=e
ϵ(ui).

Therefore, M satisfies (w, ϵ)-EPLDP.

Next, we give one special lemmas for the privacy analysis
of PLPD and PLPA, and one corollary for that of PLPD+ and
PLPA+.

Lemma IX.4. For both PLPD and PLPA, in any time window
composed of wmax = max(w) consecutive time slots, each
user reports to the server at most once.

Proof. We only need to prove that the number of users within
any wmax window is no more than n, i.e.,

∑︁t
τ=t−wmax+1 |Uτ | ≤

n. Then, because we sample a fresh set of users Uτ at each
time slot τ satisfying Us,τ ∩Ur,τ = ∅, we can guarantee each
user reports only once within any window of size wmax.

For PLPD, in Ms,t, ⌊n/ (2wmax)⌋ users are allocated at
each time slot t. Thus, for any t and k ∈ [t], there are∑︁k
τ=k−wmax+1 |Us,τ | ≤ n/2 users. In Mr,t, it either publishes

with additional users Ur,t or approximates the last release
without any user assignment. In the former case, there are at

most |Ur,t| =
(︂
n/2−

∑︁k−1
τ=k−wmax+1

|Ur,k|
)︂
/2 users. Because

Mr,t always uses at most half of the available users, we
have 0 ≤

∑︁k
τ=k−wmax+1 |Ur,τ | ≤ n/2. In the latter case,

|Ur,t| = 0. Therefore, for any t and k ∈ [t], the total number
of publication users within a wmax window for PLPD is

k∑︂
τ=k−wmax+1

|Uτ | =
k∑︂

τ=k−wmax+1

|Us,τ | +
k∑︂

τ=k−wmax+1

|Ur,τ | ≤ n.

For PLPA, similarly, in Ms,t, there are∑︁k
τ=k−wmax+1 |Us,τ | ≤ n/2 users for any t and τ ∈ [t].

In Mr,t, assume there are at most c new publications in any
wmax window. We denote these publication time slots as
(τ1, τ2, . . . , τc). For any publication time slot τj (j ∈ [c]),
we denote the number of its absorbed population share as
ηj , thus after absorption, time slot τj will occupy ηj + 1
population shares. Figure 7 illustrates an example for c = 3
and wmax = 9, in which, for instance, time slot 3 absorbs
population shares from time slots 1 and 2, while nullifying the
population at time slots 4 and 5. Noted that the absorbed time

Fig. 7: An example for new publications’ absorption in PLPA.

slot length and nullified time slot length are symmetric with
respect to the new publication, according to the definition of
τj , we have:

wmax ≥
c∑︂

j=1

(1 + 2ηj) − η1 − ηc.

Then, for any t and k ∈ [t], we have
k∑︂

τ=k−wmax+1

|Ur,τ | ≤
⌊︃

n

2wmax

⌋︃
·

c∑︂
j=1

(1 + ηj)

≤
n ·
∑︁c

j=1 (1 + ηj)

2
∑︁c

j=1 (1 + 2ηj) − 2η1 − 2ηc

=
n ·
∑︁c

j=1 (1 + ηj)

2
∑︁c

j=1 (1 + ηj) + 2
∑︁c−1

j=2 ηj

≤ n/2.

Therefore, for any t and k ∈ [t], the total number of
publication users within a wmax window for PLPA is

k∑︂
τ=k−wmax+1

|Uτ | =
k∑︂

τ=k−wmax+1

|Us,τ | +
k∑︂

τ=k−wmax+1

|Ur,τ | ≤ n.

From Lemma IX.4, we can get the following obvious
corollary.

Corollary IX.1. For both PLPD+ and PLPA+, in any time
window composed of wopt consecutive time slots, each user
reports to the server at most once.



1) Proof of Theorem IV.2:

Proof. According to Lemma IX.4, for any user ui in any
window of size wmax, it reports at most once. Thus for
any two personalized wmax-neighboring stream segments
S
(k)
τ−wmax+1,τ , Ŝ

(k)

τ−wmax+1,τ , we have ∀y ∈ Range(M),

Pr [M (Sτ−wmax+1,τ ) = y]

Pr
[︂
M
(︂
Ŝτ−wmax+1,τ

)︂
= y

]︂ ≤ e
ϵ(ui).

Hence, M satisfies ϵ-PLDP in any window of size wmax.
According to Lemma IX.1, M satisfies (wmax · 1, ϵ)-
EPLDP. Then, according to Lemma IX.2, M satisfies (w, ϵ)-
EPLDP.

2) Proof of Theorems V.3: According to Corollary IX.1 and
the process of OPS, we can conclude that both PLPD+ and
PLPA+ M satisfy ϵ̂-PLDP in any window of size wopt, where
ϵ̂ satisfies:

ϵ̂(ui) =

{︄
ϵ(ui), if w(ui) ≤ ŵ,

ϵ(ui)/ ⌈w(ui)/ŵ⌉ , otherwize.

According to Lemma IX.1, M satisfies (wopt · 1, ϵ)-EPLDP.
Then according to Lemma IX.3, we can conclude that PLPD+

and PLPA+ satisfy (w, ϵ)-EPLDP.

G. Proofs of Theorems for Utility Analysis

Lemma IX.5. Given a series privacy budget-count set P =
{(ϵk, nk)|ϵk ∈ ϵ̃, nk ∈ ñ,

∑︁
k nk = n} with sampling size z

from n users, where ϵ̃ is the total distinct privacy budget set
with ∀ϵi, ϵj ∈ ϵ̃, ϵi ̸= ϵj and ñ is the all distinct appearing
count. (ϵk, nk) indicates that there are nk users proposing
privacy budget requirement ϵk. The error upper bound of FO
process is :

˜︂errFO(P, z) =
n− z

z(n− 1)
+

n(d− 1)

zmin (ñ)
·
2emin (ϵ) + d− 2(︁
emin (ϵ) − 1

)︁2 . (16)

Let n̂max (ϵ̃) be the user number of requiring the maximum
privacy budget max (ϵ̃), the error upper bound of PFO process
is :

˜︂errPFO(P, z) =
n− z

z(n− 1)
+
n(d− 1)

zn̂max (ϵ̃)

·
2emin (ϵ̃) + d− 2(︁
emin (ϵ̃) − 1

)︁2 . (17)

Proof. For the FO case, according to Equation (6) by set-
ting pk = eϵk

eϵk+d−1 , qk = 1
eϵk+d−1 , and denoting λk =

qk(1−qk)
gk(pk−qk)

2 , µk =
1−pk−qk
gk(pk−qk)

, we can get the error as

errFO(P, z)

=
n− z

z(n− 1)
+

1/z∑︁m
k=1 1/ (dλk + µk)

≤
n− z

z(n− 1)
+

1

zm

m∑︂
k=1

(dλk + µk)

=
n− z

z(n− 1)
+
d− 1

zm

m∑︂
k=1

1

gk

(︃
2

eϵk − 1
+

d

(eϵk − 1)2

)︃

=
n− z

z(n− 1)
+
d− 1

zm

m∑︂
k=1

n

nk

(︃
2

eϵk − 1
+

d

(eϵk − 1)2

)︃

≤
n− z

z(n− 1)
+

n(d− 1)

zmin (ñ)
·
(︄

2

emin (ϵ̃) − 1
+

d(︁
emin (ϵ̃) − 1

)︁2
)︄

=
n− z

z(n− 1)
+

n(d− 1)

zmin (ñ)
·
2emin (ϵ̃) + d− 2(︁
emin (ϵ̃) − 1

)︁2 .

(18)

For the PFO case, without loss generation, let min (ϵ̃) =
ϵ1 < ϵ2 < · · · < ϵm = max (ϵ̃). According to Theorem V.1,
for users with privacy budget ϵk, the error decreases from
1
nk

·
(︂
dqk(1−qk)
(pk−qk)

2 +
1−pk−qk
pk−qk

)︂
= gk

nk
· (dλk + µk) to 1∑︁m

j=k nj
·(︂

dqk(1−qk)
(pk−qk)

2 +
1−pk−qk
pk−qk

)︂
= gk∑︁m

j=k nj
· (dλk + µk). Namely, λk

varies to λ′k =
nk∑︁m
j=k nj

·λk and µk varies to µ′
k =

nk∑︁m
j=k nj

·µk.
For the error errPFO(P, z), we have

errPFO(P, z)

=
n− z

z(n− 1)
+

1/z∑︁m
k=1 1/

(︁
dλ′

k + µ′
k

)︁
≤

n− z

z(n− 1)
+

1

zm

m∑︂
k=1

(︁
dλ

′
k + µ

′
k

)︁
=

n− z

z(n− 1)
+
d− 1

zm

m∑︂
k=1

n∑︁m
j=k nj

(︃
2

eϵk − 1
+

d

(eϵk − 1)2

)︃

≤
n− z

z(n− 1)
+
n(d− 1)

zn̂max (ϵ̃)

·
(︄

2

emin (ϵ̃) − 1
+

d(︁
emin (ϵ̃) − 1

)︁2
)︄

=
n− z

z(n− 1)
+
n(d− 1)

zn̂max (ϵ̃)

·
2emin (ϵ̃) + d− 2(︁
emin (ϵ̃) − 1

)︁2 .

1) Proof of Theorem IV.3 and IV.4:

Proof. Let P = {(ϵk, nk)|ϵk ∈ ϵ̃, nk ∈ ñ,
∑︁
k nk = n} be

the distinct privacy budget-count set. At any time slot t, if the
sampling size is z, according to Equation (16) in Lemma IX.5,
the error upper bound of executing FO is n

z(n−1) − 1
n−1 +

n(d−1)
zmin (ñ) ·

2emin (ϵ̃)+d−2

(emin (ϵ̃)−1)
2 .

Suppose Ms,t is not private, then the error only comes from
sub-mechanism Mr,t. We discuss Mr,t in PLPD and PLPA,
respectively.

In PLPD, for any new publication at time slot τ , the error
is ˜︂errFO(P, z), where z is the sampling size at τ . For other
skipped time slots, the error is no larger than that of the last
new publication. Since the population is distributed to the s
new publications in an exponentially decreasing way, the sam-
pling population size sequence is then n/4, n/8, / . . . , n/2s+1.
Thus, by denoting A = d−1

min (ñ) ·
2emin (ϵ̃)+d−2

(emin (ϵ̃)−1)
2 we have

errPLPD,r,t

=
1

wmax
·

s∑︂
τ=1

wmax

s
· errFO

(︃
P,

n

2τ+1

)︃

≤
1

s
·

s∑︂
τ=1

˜︂errFO

(︃
P,

n

2τ+1

)︃

=
1

s

s∑︂
τ=1

(︄
n

n

2τ+1 (n− 1)
−

1

n− 1
+

n
n

2τ+1

· A
)︄

=
1

s
·
(︄
−

s

n− 1
+

(︃
1

n− 1
+ A

)︃ s∑︂
τ=1

2
τ+1

)︄

=
1

s
·
(︃
−

s

n− 1
+

(︃
1

n− 1
+ A

)︃
· 4 · (2s − 1)

)︃
=

4(2s − 1)

s
·
(︃

1

n− 1
+ A

)︃
−

1

n− 1
.

(19)

In PLPA, since there are s new publications, there are
wmax − s approximate publications. Because the skipped and
nullified publications occur in pairs (i.e., the numbers of
skipped publications and nullified publications are equal)



and each new publication corresponds the same number of
skipped publications, the numbers of skipped and nullified
publications are both nskp = nnlf = wmax−s

2·s . For each new
publication, the population size is nskp · n

2wmax
= (wmax−s)n

4swmax
.

For each skipped publication, its error is no more than the
new publication, otherwise it will not skip. Further more, a
new publication sampling size lower bound at each skipped
publication time slot is increasing from n

2wmax
in an exponential

fashion, namely, they are n
2wmax

, n·2
2wmax

, . . . , n·2
nskp

2wmax
. For each

nullified publication, because we have no information about
the underlying statistic and nullification is enforced prior to
their arrival, we cannot quantify this kind of error. Thus, we
denote the nullified publication error as errnlf. For the error
of Mr,t in PLPA, by denoting A = d−1

min (ñ) · 2emin (ϵ̃)+d−2

(emin (ϵ̃)−1)
2 ,

B = nskp = wmax−s
2s and C = s

wmax
, we have

errPLPA,r,t

≤
1

wmax
·

s∑︂
τ=1

(︄˜︂errFO

(︃
P,

(wmax − s)n

4swmax

)︃
+

wmax−s
2s∑︂

j=1

˜︂errFO

(︄
P,
n · 2j

2wmax

)︄

+
wmax − s

2s
· errnlf

)︄

=
s

wmax
·
(︄

−
1

n− 1
+

4swmax

(n− 1) · (wmax − s)
+

4swmax

(wmax − s)
· A−

wmax − s

2s(n− 1)

+

(︄
wmax

n− 1
+ wmax · A

)︄
·

wmax−s
2s∑︂

j=1

1

2j−1
+
wmax − s

2s
· errnlf

)︄

=C ·
(︃
B · errnlf −

B + 1

n− 1
+

(︃
wmax

n− 1
+ wmax · A

)︃
·
(︃
2 −

1

2B+1
+

2

B

)︃)︃
=BC · errnlf −

(B + 1)C

n− 1
+

(︃
s

n− 1
+ s · A

)︃
·
(︃
2 −

1

2B+1
+

2

B

)︃
.

(20)
When sub-mechanism Ms,t is private, in both PLPD and

PLPA, there is a sample |Us,t| of fixed sampling size zmin =
⌊n/ (2wmax)⌋ of users for dis calculation. The error in Ms,t

will lead to a false publication decision, i.e., making Mr,t

(1) falsely skip a publication, or (2) falsely perform a new
publication. Both of the two cases are due to the error of dis
calculation, which is 1

d3 errFO (P, zmin)
2. Therefore the average

error of Ms,t within any window of size wmax is

errs,t ≤
1

d3
·˜︂errFO(P, zmin)

2

=
1

d3

(︃
−

1

n− 1
+

2wmax

n− 1
+ 2wmaxA

)︃2

.
(21)

Thus, the error upper bound at each time slot is
1
d3

(︂
− 1
n−1 + 2wmax

n−1 + 2wmaxA
)︂2

+ 4(2s−1)
s ·

(︂
1

n−1 +A
)︂
− 1
n−1

in PLPD and 1
d3

(︂
− 1
n−1 + 2wmax

n−1 + 2wmaxA
)︂2

+BC · errnlf −
(B+1)C
n−1 +

(︂
s

n−1 + s ·A
)︂
·
(︁
2− 1

2B+1 + 2
B

)︁
in PLPA.

2) Proof of Theorem V.4 and V.5:

Proof. Let Popt = {(ϵk, nk)|ϵk ∈ ϵ̃opt, nk ∈ ñopt,
∑︁
k nk =

n} be the distinct privacy budget-count set after executing
OPS. At any time slot t, if the sampling size is z, according
to Equation (17) in Lemma IX.5, the error upper bound of
executing PFO is n

z(n−1) −
1

n−1 +
n(d−1)

zn̂max (ϵ̃opt)
· 2emin (ϵ̃opt)+d−2(︂

emin (ϵ̃opt)−1
)︂2 .

Similar to the process in utility process (Section IX-G1) of
PLPD and PLPA. We first assume the sub-mechanism Ms,t is
not private.

In this way, for the error of Mr,t in PLPD+, by setting
A = d−1

n̂max(ϵ̃opt)
· 2emin (ϵ̃opt)+d−2(︂

emin (ϵ̃opt)−1
)︂2 , we have

errPLPD+,r,t

=
1

wopt
·

sopt∑︂
τ=1

wopt

sopt
· errPFO

(︃
Popt,

n

2τ+1

)︃
≤

4(2sopt − 1)

sopt
·
(︃

1

n− 1
+ A

)︃
−

1

n− 1
.

For the error of Mr,t in PLPD+, by further setting B =
wopt−sopt

2sopt
and C =

sopt

wopt
, we have

errPLPA+,r,t

≤
1

wopt
·

sopt∑︂
τ=1

(︄˜︂errPFO

(︃
Popt,

(wopt − sopt)n

4swopt

)︃
+

wopt−sopt
2sopt∑︂
j=1

˜︂errPFO

(︄
P,
n · 2j

2wopt

)︄

+
wopt − sopt

2sopt
· errnlf

)︄

=BC · errnlf −
(B + 1)C

n− 1
+

(︃
sopt

n− 1
+ sopt · A

)︃
·
(︃
2 −

1

2B+1
+

2

B

)︃
.

When Ms,t is private, we can get the error as

errs,t ≤
1

d3
·˜︂errPFO(P, zopt)

2

=
1

d3

(︃
−

1

n− 1
+

2wopt

n− 1
+ 2woptA

)︃2

.

Therefore, the error upper bound is
1
d3

(︂
− 1
n−1 +

2wopt

n−1 + 2woptA
)︂2

+ 4(2sopt−1)
sopt

·
(︂

1
n−1 +A

)︂
− 1
n−1

in PLPD+, and 1
d3

(︂
− 1
n−1 +

2wopt

n−1 + 2woptA
)︂2

+BC ·errnlf −
(B+1)C
n−1 +

(︂
sopt

n−1 + sopt ·A
)︂
·
(︁
2− 1

2B+1 + 2
B

)︁
in PLPA+.

H. Extra Experiment Results
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Fig. 8: The running time with ϵ varied.
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Fig. 9: The running time with w varied.
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Fig. 10: AJSD with ϵ varied.
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Fig. 11: AJSD with w varied.
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Fig. 12: The ablation study of AJSD with ϵ varied.
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Fig. 13: The ablation study of AJSD with w varied.
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