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Abstract—With the development of traffic prediction tech-
nology, spatiotemporal prediction models have attracted more
and more attention from academia communities and industry.
However, most existing researches focus on reducing model’s
prediction error but ignore the error caused by the uneven
distribution of spatial events within a region. In this paper, we
study a region partitioning problem, namely optimal grid size
selection problem (OGSS), which aims to minimize the real error
of spatiotemporal prediction models by selecting the optimal grid
size. In order to solve OGSS, we analyze the upper bound of real
error of spatiotemporal prediction models and minimize the real
error by minimizing its upper bound. Through in-depth analysis,
we find that the upper bound of real error will decrease then
increase when the number of model grids increase from 1 to
the maximum allowed value. Then, we propose two algorithms,
namely Ternary Search and Iterative Method, to automatically
find the optimal grid size. Finally, the experiments verify that the
error of prediction has the same trend as its upper bound, and
the change trend of the upper bound of real error with respect
to the increase of the number of model grids will decrease then
increase. Meanwhile, in a case study, by selecting the optimal grid
size, the order dispatching results of a state-of-the-art prediction-
based algorithm can be improved up to 13.6%, which shows the
effectiveness of our methods on tuning the region partition for
spatiotemporal prediction models.

I. INTRODUCTION

Recently, many spatiotemporal prediction models are pro-
posed to predict the number of events (e.g., online car-hailing
requests [1], [2], [3], or street crimes [4], [5]) within a region
(e.g., a gird of 1km×1km) in a period (e.g., next 30 minutes)
[6], [7], [8]. With the help of predicted information of events,
we can improve the platform revenue of online car-hailing
systems (e.g., Uber [9]), or reduce crimes effectively through
optimizing patrol route of police [5].

One common assumption of spatiotemporal prediction mod-
els is that the distribution of spatial events within a region is
uniform [1], [6], [2], which is in fact almost never true in real
scenarios. In addition, the selection of region size is mostly
decided by experts’ experience or simple experimental tests
without detailed analysis in many existing research studies:
• “We use 20×30 = 600 grids to cover the cities and one grid

represents a 0.01 (longitude)×0.01 (latitude) square.” [1]
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Fig. 1: Forecast and Actual Distribution of Orders in Grids

• The authors use 32×32 grids to cover Beijing area and 16×8
grids for New York City area [6].

• “For the prediction model, DeepST, we set the default grid
size as 2km×2km ...” [2]

Under the uniform region assumption, the spatiotemporal
prediction models are optimized to minimize the model error
in model grids (i.e., the difference between the predicted and
actual number of spatial events in grids used in the prediction
model), which may lead to dramatic real errors in some smaller
regions (i.e., the difference between the predicted and the
actual number of spatial events in smaller and homogeneous
grids). Then, the overall performance of frameworks utilizing
spatiotemporal prediction models will not be optimized for
real applications. For example, with careful grid size selection,
the overall performance of a state-of-the-art prediction based
online spatial crowdsourcing framework [1] can be increased
up to 13.6% (shown in a case study in Section V).

We illustrate this challenge with the following example:

Example 1. As shown in Figure 1, the solid black lines divide
the space into four model grids to be predicted. The blue dot
lines further divide each model grid into four smaller grids.
We can use spatiotemporal prediction models to predict the
number of events in each model grid. In the absence of prior
knowledge of the distribution of events within a model grid, the
models generally assume that the distribution of events within
a model grid is uniform, which means that the number of
events in each smaller grid within a same model grid is equal
to each other. Thus, we can estimate the predicted number of
each smaller grid through averaging the predicted result of the



corresponding model grid. The red number shown in Figure 1
denotes the predicted number of events for each smaller grid.
The predicted result for each model grid is the summation of
the number of events for all its smaller grids. We can directly
calculate the model error of the prediction model on large
grids is 3 (= |8−9|+ |2−1|+ |4−4|+ |4−5|). Nevertheless,
if the model error is calculated based on smaller grids, it will
increase to 10 (= |2 − 3| + |2 − 2| + |0.5 − 0| + |0.5 − 0| +
|2− 3|+ |2− 1|+ |0.5− 0|+ |0.5− 1|+ |1− 0|+ |1− 3|+
|1− 1|+ |1− 1|+ |1− 0|+ |1− 1|+ |1− 1|+ |1− 2|). The
reason is that the distribution of events in each large grid is
uneven, which is ignored in almost all existing studies.

Why not directly predict the spatial events for each smaller
grid? The reason is twofold. Firstly, due to the uncertainty of
spatial events, it is too hard to accurately predict the number of
spatial events in a very small grid (e.g., 100m×100m). When
the size of grid is too small, there will be no enough historical
data for prediction model to learn the distribution of the spatial
events in each small area. In addition, the number of spatial
events in a small grid is also small, then the accuracy (relative
error) of prediction models will be dramatically affected by
the randomness of the spatial events, since the uncertainty
of spatial events is inevitable [10], [1], [11]. Secondly, the
computation complexity of prediction models will increase re-
markably when the number of grids increases [10], [12]. Thus,
almost all spatiotemporal prediction models still use relatively
large grids (e.g., grids of 2km×2km) as the prediction units.

Can we have an automatic and theoretic-guaranteed opti-
mal grid size selection method to minimize the overall real
error of spatiotemporal prediction models? To overcome this
long-standing challenge, in this paper we study the optimal
grid size selection (OGSS) problem to guide the configuration
of grid size such that the real errors are minimized for
spatiotemporal prediction models in real applications.

In this paper, we reinvestigate the grid size selection prob-
lem in spatiotemporal prediction models in detail. We assume
that the distribution of the spatial events in a small enough grid
(e.g., 100m×100m) can be considered homogeneous. Then,
the real error of a spatiotemporal prediction model is evaluated
through the total difference between the predicted number
and real number of spatial events among all small grids.
Specifically, we decompose the real error of the prediction
models into the model error and the expression error. Here,
the model error indicates the inherent error of the prediction
models, and the expression error stands for the error of using
the predicted number of events in a large grid to express
the future events in its inner smaller grids (as illustrated in
Example 1). We prove that the summation of model error
and expression error of a spatiotemporal prediction model is
an upper bound of its real error. We also verify that for any
spatiotemporal prediction model, with the increase of the size
of grids, the upper bound of its real error will first decrease
then increase. Based on our theoretical analysis, we propose
two algorithms, namely Ternary Search algorithm and Iterative
algorithm, to quickly find the optimal size of model grids for

a given spatiotemporal prediction model.
To summarize, we make the following contributions:

• We formally define a novel metric, real error, to measure
the deviation between the model’s forecast and the actual
number of events for homogeneous grids. Then, we propose
a new problem, namely optimal grid size selection (OGSS),
to automatically find the optimal grid size for a given
spatiotemporal prediction model in Section II

• We analyze the upper bound of the real error and the
relationship between the number of model grids and the
upper bound in Section III. Then, we propose two algorithms
to find the optimal grid size to minimize the upper bound
of real error in Section IV.

• We conduct sufficient experiments on different spatiotem-
poral prediction models to explore the influencing factors
of real errors in Section V.
We review the related studies in Section VI and conclude

this paper in Section VII.

II. PRELIMINARIES

In this section, we will introduce some basic concepts and
present the formal definition of model grid, homogeneous grid,
model error, expression error and real error. We prove that the
summation of model error and expression error is an upper
bound of real error.

A. Basic Concepts

Without loss of generality, in this paper, we consider that
the spatiotemporal prediction models will first divide the
whole space into n rectangular model grids, then predict the
number of spatial events for each model grid in a given future
time period. When the size of a grid is small enough (e.g.,
100m×100m), the distribution of spatial events can be consid-
ered uniform for most application scenarios (e.g., online car-
hailing systems). Under this assumption, each model grid will
be further divided into m smaller homogeneous grids, where
predicted spatial events is considered uniformly distributed in
each homogeneous grid. To ensure HGrids are small enough,
it is required that the number of HGrids is larger than N (i.e.,
mn > N ). We note N as the minimum number that makes the
distribution of spatial events in each HGrid itself is uniform.
We propose a method to select a proper value of N in Section
III. We formally define the model grids and the homogeneous
grids as follows:

Definition 1 (Model Grid, MGrid). The whole space is divided
into n same-sized model grids {r1, r2, · · · , rn}. The number
of actual spatial events happening in ri in the next period
is noted as λi. A spatiotemporal prediction model will predict
the number, λ̂i, of spatial events that happening in each model
grid ri in the next period.
Definition 2 (Homogeneous Grid, HGrid). Each model grid
ri can be further evenly divided into m homogeneous grids
{ri1, ri2, · · · , rim}. For a homogeneous grid rij , the number
of actual spatial events happening in it in the next period is
marked as λij (i.e., λi =

∑m
j=1 λij).



Fig. 2: An Illustration of Relationships between Basic Concepts.

In the absence of any prior knowledge of the distribution
of the spatial events in a model, we assume that the number
of spatial events of each HGrid in the MGrid is same to each
other according to the principle of maximum entropy [13].
Thus, with the actual number, λi, of spatial events in MGrid
ri, the estimated number of spatial events of HGrid rij is
denoted as λ̄ij = λi

m =
∑m
j=1 λij

m . Similarly, with the predicted
number, λ̂i, of spatial events of MGrid ri, we can have the
predicted number of spatial events of HGrid rij as λ̂ij = λ̂i

m .
The differences between λij , λ̄ij and λ̂ij lead to three types

of errors: model error, expression error and real error. Figure
2 illustrates the three types of errors. The frameworks utilizing
spatiotemporal prediction models is hard to get the information
about the real distribution of spatial events from the models.
Thus, the prediction result λ̂i of a MGrid ri will be divided
equally into HGrids without any prior information. The real
error describes the difference between the actual number of
spatial events λij and the predicted result λ̂ij of HGrid rij .
However, it is difficult to calculate the real error directly.
Therefore, λ̄ij is introduced to decompose the real error into
expression error and model error. We formally define the real
error model error and expression error as follows:

Definition 3 (Real Error). For a HGrid rij , its real error
Er(i, j) is defined as the mean/average of difference between
its predicted and actual numbers of spatial events in the
corresponding same time periods of the historical days for
the next period. It means Er (i, j) = Eλij∼P (|λ̂ij − λij |), where
λij follows a given distribution P .

In practice, it is difficult to calculate the difference |λ̂ij−λij |
without the information about the number λij of events in
next period. Thus, we define the real error as the mean of
the difference |λ̂ij − λij |. However, due to the lack of a
sufficient number of samples, it is difficult for us to calculate
Er (i, j) accurately because λij does not follow the same
distribution for different time periods. Another factor is that
the environment is prone to change over a long period, so the
number of events does not follow the same distribution either.
As a result, we use the number of events in the same time
period on each day of the previous one month to estimate
real error. Suppose that we have a set Λij of the actual events
number, λij , and its corresponding prediction number, λ̂ij , we
can estimate Er (i, j) as follows:

Er (i, j) = Eλij∼P (|λ̂ij − λij |) =
1

|Λij |
∑

(λ̂ij ,λij)∈Λij

|λ̂ij − λij |

Definition 4 (Model Error). For a HGrid rij , its model
error Em(i, j) is the mean/average of difference between
its predicted and estimated numbers of spatial events in the
corresponding same time periods of the historical days for the
next period. It means Em(i, j) = Eλij∼P (|λ̂ij − λ̄ij |), where λij
follows a given distribution P .

Definition 5 (Expression Error). For a HGrid rij , its expres-
sion error Ee(i, j) is the mean/average of difference between
its estimated and actual numbers of spatial events in the
corresponding same time periods of the historical days for
the next period. It means Ee(i, j) = Eλij∼P (|λ̄ij − λij |), where
λij follows a given distribution P .

In the previous analysis, we explained that the grid size
selection would significantly affect the real error. This paper
aims to find an optimal size that minimizes the summation of
real errors in all HGrids. We define the problem as follows:

Definition 6 (Optimal Grid Size Selection Problem, OGSS).
For a given number of all HGrids N , and a given model to
predict the number of spatial events for MGrids in next period,
the optimal grids size selection problem is to find the optimal
n to minimize the summation of real error of all HGrids under
the constraint nm > N , which is:

min
n

n∑
i=1

m∑
j=1

Er(i, j) (1)

s.t. nm > N

where m represents the minimum required number of HGrids
in each MGrid satisfying nm > N . We will discuss how to
select a proper N in Section III.

B. Upper Bound of Real Error

We denote the summation of model error and expression
error as Eu (i, j) (= Em (i, j) +Ee (i, j)). We can prove that
Eu (i, j) is an upper bound on Er (i, j) by the theorem II.1.

Theorem II.1 (Upper Bound of Real Error). Eu (i, j) is an
upper bound of real error Er (i, j)

Proof. We prove it through the following inequalities:

Er (i, j) = E
(
|λ̂ij − λij |

)
= E

(
|λ̂ij − λ̄ij + λ̄ij − λij |

)
≤ E

(
|λ̂ij − λ̄ij |+ |λ̄ij − λij |

)
= E

(
|λ̂ij − λ̄ij |

)
+ E

(∣∣λ̄ij − λij∣∣)
= Em (i, j) + Ee (i, j) = Eu (i, j)

Meanwhile, we obtain the upper bound of the difference
between Eu (i, j) and Er (i, j) by the following scaling:

Eu(i, j)− Er(i, j) ≤ E
(

2 min
(
|λ̂ij − λ̄ij |, |λ̄ij − λij |

))
= 2 min

(
E
(
|λ̄ij − λij |

)
,E
(
|λ̂ij − λ̄ij |

))
= 2 min (Ee(i, j), Em(i, j))

This indicates that we can ensure that the Er (i, j) is small
when Eu (i, j) is minimized. Therefore, we will minimize
Eu (i, j) as much as possible to optimize OGSS in the



TABLE I: Symbols and Descriptions.
Symbol Description
ri a MGrid
rij a HGrid in MGrid ri
n the number of MGrids
m the number of HGrids for each MGrid
λ̄ij the estimated number of spatial events for HGrid rij
λij the actual number of spatial events in HGrid rij
λi the actual number of spatial events in MGrid ri
λ̂i the prediction of λi
αij the temporal mean of λij
Er (i, j) the real error of HGrid rij
Ee (i, j) the expression error of HGrid rij
Em (i, j) the model error of HGrid rij

following sections of this paper. Finally, Table I shows some
important notations used in this paper.

III. ERROR ANALYSIS

In this section, we first explain how to select a proper N
such that each HGrid is small enough and can be considered
uniform. Then, we discuss the property of expression error and
propose two algorithms to quickly calculate expression error.
Finally, we analyze the model error.

A. Select A Suitable N

We explain how to choose a suitable N in this section. Most
of spatiotemporal prediction models are based on experience
to divide the whole space into many same-sized MGrids (e.g.,
2km×2km grid). However, these methods ignore the uneven
distribution of spatial events within a MGrid.

We divide the whole space into √N × √N (i.e., nm = N)
same-sized HGrids. Let αij be the mean number of events
for HGrid rij in the next period, which can be estimated
as the average number of the historical records (i.e., nearest
one month’s data) of rij . Here, we give the definition of the
uniformly distribution for a grid as follows:

Definition 7 (Uniformly Distributed Grid). Given a grid rij
with the expected spatial events number αij and a positive
integer K ∈ Z+, we divide the grid into K smaller grids with
the expected spatial events number αijk, k = 1, 2, ..., K. Grid rij
is uniformly distributed if and only if αijk =

αij
K for any

1 ≤ k ≤ K.
Then, we introduce a metric to measure the degree of the

uneven distribution for spatial events in HGrids, which is
defined as the following formula:

Dα (N) =
n∑
i=1

m∑
j=1

|αij − ᾱN | , (2)

where ᾱN = 1
N

∑n
i=1

∑m
j=1 αij . We notice that when N in-

creases, Dα (N) will also increase. However, when N is large
enough (i.e., spatial events can be considered evenly dis-
tributed in each HGrid), Dα (N) will not significantly increase
any more. We prove this with the following theorem:

Theorem III.1. Assume that N is suitable (sufficiently large)
such that the spatial events are uniformly distributed in each
HGrid, then Dα (N) = Dα (NK), for any K ∈ Z+.

Proof. We divide each HGrid rij into smaller grids denoted
as rijk (k = 1, 2, . . . ,K), where the mean number of events

for each smaller grid is denoted as αijk. Due to the uniformity
of each HGrid, we have αijk =

αij
K . Thus, we have

Dα (NK) =
n∑
i=1

m∑
j=1

K∑
k=1

|αijk − ᾱNK | (3)

=
n∑
i=1

m∑
j=1

K

∣∣∣∣αijK −
1

K
ᾱN

∣∣∣∣ = Dα (N)

The increase of N will not contribute to the increase of
Dα (N) when N is large enough, which means that Dα (N)
can be an indicator to help us to select N . In other words,
we should choose a sufficiently large N so that Dα (N) is
maximized in practice.

B. Analysis and Calculation of Expression Error

We assume that the number λij of events in a HGrid rij
follows a poisson distribution Pois with parameter of αij (αij
is the mean number of events for HGrid rij), which is verified
in our previous work [3], [14].
Calculation of Expression Error. We first analyze how to
calculate expression error for a given HGrid rij . Due to λij ∼
Pois(αij), we have

P (λij = kh) = e
−αij αij

kh

kh!
, kh ∈ N (4)

Then, we define the random variable λi,6=j as the mean
of the number of events for all HGrids in MGrid ri ex-
cluding the HGrid rij (i.e., λi,6=j =

∑
g 6=j λig), and have

λi,6=j ∼ Pois(
∑
g 6=j αig) because of the additivity of Poisson

distribution. Let λ̄i,6=j = 1
mλi,6=j , we have

P (λ̄i, 6=j =
km

m
) = e

−
∑
g 6=j αig

(∑
g 6=j αig

)km
km!

, km ∈ N (5)

Since λij and λ̄i,6=j is independent of each other, P (|λ̄ij −
λij |) can be expressed by

P (|λ̄ij − λij | =
kd

m
) = P (|

m− 1

m
λij − λ̄i, 6=j | =

kd

m
)

=
∑

|m−1
m

kh−
km
m
|= kd

m

P (λij = kh)P

(
λ̄i,6=j =

km

m

)

=
∑

(m−1)kh−km
m

=± kd
m

p (rij , kh, km) (6)

where p (rij , kh, km) = e−
∑m
j=1 αij

(
∑
g 6=j αig)km (αij)

kh

km!kh! de-
noting the probability when the number of events in HGrid
rij is kh and the number of events in MGrid ri is kh + km.
Then, we have:

Ee (i, j) = E(|λij − λ̄ij |) =
∞∑

kd=0

kd

m
P (|λij − λ̄ij | =

kd

m
)

=
∞∑

kd=0

kd

m

∑
(m−1)kh−km

m
=± kd

m

p (rij , kh, km)

=

∞∑
kh=0

∞∑
km=0

bkhkm (7)

where bkhkm =
∣∣∣ (m−1)kh−km

m

∣∣∣ p (rij , kh, km). Here,
p (rij , kh, km) represents the probability when the number of
events in MGrid ri is km + kh and the number of events in
HGrid rij is kh, and the single expression error of HGrid rij
in this situation is

∣∣∣ (m−1)kh−km
m

∣∣∣. Thus, Equation 7 can be
regarded as a weighted average of the single expression error
in all possible cases.



We can use Equation 7 to calculate the expression error of
HGrid rij , which also indicates that the expression error is
only related to the αij of each HGrid rij and m.
Properties of expression error. We show that the upper bound
of expression error Ee (i, j) is positively correlated to αij and
m. In other words, when αij or m increases, the upper bound
of expression error Ee (i, j) will also increase. This relationship
is presented with the following lemma:

Lemma III.1. ∀M1,M2 ∈ Z+, we have
M1∑
kh=0

M2∑
km=0

bkhkm < (1−
2

m
)αij +

∑m
k=1 αik

m
.

Proof.
M1∑
kh=0

M2∑
km=0

bkhkm =

M1∑
kh=0

M2∑
km=0

∣∣∣∣ (m− 1)kh − km
m

∣∣∣∣ p (rij , kh, km)

≤
M1∑
kh=0

M2∑
km=0

(
(m− 1)kh

m
+
km

m

)
p (rij , kh, km) (8)

Considering the first term of right hand side of Inequation 8,
we have

M1∑
kh=0

M2∑
km=0

(m− 1)kh

m
p (rij , kh, km)

=

M1∑
kh=0

M2∑
km=0

(m− 1)kh

m
e
−
∑m
j=1 αij

(
∑
g 6=j αig)km (αij)

kh

km!kh!

=
(m− 1)

m

M1∑
kh=1

e−αij (αij)
kh

(kh − 1)!

M2∑
km=0

e
∑
g 6=j αig

(
∑
g 6=j αig)km

km!
(9)

<
(m− 1)

m

M1∑
kh=1

e−αij (αij)
kh

(kh − 1)!
(10)

=
(m− 1)αij

m

M1∑
kh=1

e−αij (αij)
kh−1

(kh − 1)!

=
(m− 1)αij

m

M1−1∑
kh=0

e−αij (αij)
kh

kh!
(11)

<
(m− 1)

m
αij (12)

The item e−
∑
g 6=j αig (

∑
g 6=j αig)km

km! in Equation 9 can be
regarded as the probability of P̃ (x = km) where P̃ is a Poisson
with the mean of ∑

g 6=j αig. Besides, the item e
−αij (αij)kh

kh!

in Equation 11 can also be regarded as the probability of
P̃ (x = kh) where P̃ is a Poisson with the mean of αij . in-
equalities 10 and 12 hold, because as the integral of a Poisson
distribution on a part of the whole range is smaller than 1.
Then, we can do the same thing to simplify the second term
of right hand side of Inequality 8:

M1∑
kh=0

M2∑
km=0

km

m
p (rij , kh, km)

=
1

m

M1∑
kh=0

e−αij (αij)
kh

kh!

M2∑
km=1

e
−
∑
g 6=j αig

(
∑
g 6=j αig)km

(km − 1)!

<
1

m

∑
g 6=j

αig

Thus, we have
∑M1
kh=0

∑M2
km=0 bkhkm < (1− 2

m
)αij+

∑m
k=1 αig
m

Then, we can get the upper bound of the summa-
tion of Ee (i, j) for all HGrids is ∑n

i=1

∑m
j=1 Ee (i, j) ≤

2
(
1− 1

m

)∑n
i=1

∑m
j=1 αij .

According to Theorem II.1, to minimize the overall real
error, we need to minimize the overall expression error. With
Lemma III.1, to minimize expression error Ee (i, j), we can
minimize αij or m. However, αij is an inner property of
HGrid rij and not determined by the prediction algorithms.
For example, αij on weekdays and weekends in the same
HGrid rij is quite different. On the other hand, the mean
number of events in the same grid can vary greatly in different
time periods of the day. Then, to minimize expression errors,
we should select the appropriate n to minimize m under the
constraint nm > N . Since nm > N , in order to minimize m, we
should maximize n.
Convergence of Expression Error. We notice that Equation
7 is a summation of an infinite series. For a HGrid rij , we
explain that Equation 7 to calculate expression error Ee (i, j)
can converge:

Lemma III.2. Equation 7 to calculate Expression error
Ee (i, j) can converge.

Proof. Considering that bkhkm for any kh, km is positive and∑M1
kh=0

∑M2
km=0 bkhkm is bounded according to the Lemma III.1,

we can prove that Equation 7 can converge. Let S (M2,M1) =∑M2
km=0

∑M1
kh=0 bkhkm . Lemma III.1 shows ∃M > 0 make the

S (M2,M1) ≤M hold for any M2 ∈ Z. Since S (M2,M1) is mono-
tonically increasing with respect to M2, limM2→∞ S (M2,M1) can
converge, and we have limM2→∞ S (M2,M1) ≤M , that is:

∞∑
km=0

M1∑
kh=0

bkhkm ≤M ⇔
M1∑
kh=0

∞∑
km=0

bkhkm ≤M

Let T (M1) =
∑M1
kh=0

∑∞
km=0 bkhkm , and we have

limM1→∞ T (M1) = Ee (i, j). In the same way, we
can prove that Ee (i, j) can converge, which means
Ee (i, j) = limM1→∞ T (M1) ≤ M because of the monotone
increase with respect to M1.

Since Equation 7 can converge, we will introduce algorithms
to calculate expression error.
Algorithm to Calculate Expression Error. Equation 7 shows
how to calculate the expression error Ee (i, j) for a HGrid rij .
In fact, we cannot compute the expression error exactly, but
we can prove that the expression error can be approximated
to arbitrary precision through the below theorem.

Theorem III.2. For any ε, there is a number K that makes
the following inequality holds:∣∣∣∣∣∣

K∑
kh=0

(m−1)K∑
km=0

bkhkm − Ee (i, j)

∣∣∣∣∣∣ < ε

Proof. Lemma III.2 shows that Ee (i, j) can converge. We
have

lim
k̃1→∞

k̃1∑
kh=0

∞∑
km

bkhkm = Ee (i, j)

According to the definition of limit, there will be M1 for
any ε > 0 that we have

−ε
2
<

k̃1∑
kh=0

∞∑
km

bkhkm − Ee (i, j) <
ε

2

when k̃1 > M1, which means

−ε
2

+ Ee (i, j) <

k̃1∑
kh=0

∞∑
km

bkhkm <
ε

2
+ Ee (i, j)



Algorithm 1: Expression Error Calculation

Input: the number m of HGrids per MGrid, αij for each
HGrid rij in the MGrid ri, a hyper-parameter K

Output: the expression error Ee(i, j) of the HGrid rij
1 Ee(i, j)← 0
2 αi,6=j ←

∑m
g 6=j αig

3 p1 ← e−αij

4 for kh = 1 to K do
5 p2 ← e−αi, 6=j

6 for km = 1 to (m− 1)K do
7 ∆←

∣∣∣ (m−1)kh−km
m

∣∣∣ p1p2

8 Ee(i, j)← Ee(i, j) + ∆

9 p2 ← −p2αi, 6=j
km

10 p1 ← p1αij
kh

11 return Ee(i, j)

Since the series
∑k̃1

kh=0

∑∞
km

bkhkm are bounded (shown by
Lemma III.1), we can switch the order of the series.

k̃1∑
kh=0

∞∑
km

bkhkm =

∞∑
km

k̃1∑
kh=0

bkhkm

We can also find M2 for a positive number ε that meets

−ε
2
<

k̃1∑
kh=0

k̃2∑
km

bkhkm −
∞∑
km

k̃1∑
kh=0

bkhkm <
ε

2

Based on the definition of the limit when k̃2 > M2, we have

−ε <
k̃1∑
kh=0

k̃2∑
km

bkhkm − Ee (i, j) < ε

We select a number K which meets the constraints of K >
M1 and (m− 1)K > M2. Thus, we have∣∣∣∣∣∣

K∑
kh=0

(m−1)K∑
km=0

bkhkm − Ee (i, j)

∣∣∣∣∣∣ < ε (13)

Theorem III.2 shows that we can achieve the result close
to the expression error by selecting a suitable K. We first
need to compute p (rij , kh, km), which needs O (kh + km) time
to compute. Then, the complexity of the whole calcula-
tion of Equation 7 is O

(
m2K3

). However the calculation of
p (rij , kh, km) can be simplified as follows:

p (rij , kh, km + 1) =

∑m
g 6=j αig

km + 1
p (rij , kh, km) (14)

Based on Equation 14, Algorithm 1 is proposed to approx-
imately computing the expression error Ee (i, j) of the HGrid
rij . Since the complexity of computing p (rij , kh, km) is O (1),
the complexity of Algorithm 1 is O

(
mK2

).
Algorithm Optimization. Considering the large number of
HGrids, even though the time needed to calculate the expres-
sion error of each HGrid is only about 0.1 second, the final
time cost needed to calculate the summation of expression
error of all HGrids with Algorithm 1 is about 4 hours.
Therefore, we introduce a more efficient algorithm with time
complexity of O (mK) in this section based on a more in-depth
analysis of Equation 7.

According to theorem III.2, we can approximate Equation
7 with the following equations:

K∑
kh=0

(m−1)K∑
km=0

∣∣∣∣ (m− 1)kh − km
m

∣∣∣∣ p (rij , kh, km) (15)

=
(m− 1)

m

K∑
kh=0

(m−1)K∑
km=0

khI ((m− 1) kh − km) p (rij , kh, km)

−
1

m

K∑
kh=0

(m−1)K∑
km=0

kmI ((m− 1) kh − km) p (rij , kh, km) (16)

where I(x) is a indicator function and satisfies:

I(x) =

{
1, x > 0
−1, x ≤ 0

We transform the first term of right hand side of Equation
16 (denoted as e1) to the following formula:

(m− 1)

m

K∑
kh=1

(m−1)K∑
km=0

khI((m− 1)kh − km)p(rij , kh, km)

=
(m− 1)

m

K∑
kh=1

kh(2

(m−1)kh∑
km=0

p(rij , kh, km)−
(m−1)K∑
km=0

p(rij , kh, km))

=
(m− 1)

m

K∑
kh=1

e
−
∑m
j=1 αij

(αij)
kh

(kh − 1)!
e
′
1(kh) (17)

Let e′1 (kh) denote a function with respect to km, as follows:

−
(m−1)K∑
km=0

(∑
g 6=j αig

)km
km!

+ 2

(m−1)kh∑
km=0

(∑
g 6=j αig

)km
km!

(18)

The time complexity of the direct calculation of e′1 (kh + 1) is
O (mK) based on Equation 18; as a result, the time complexity
of calculating e1 is O

(
mK2

). However, we can build the
connection between e

′
1 (kh + 1) and e

′
1 (kh) as follows:

e
′
1 (kh + 1)− e

′
1 (kh)

= 2

(m−1)(kh+1)∑
km=0

(∑
g 6=j αig

)km
km!

− 2

(m−1)kh∑
km=0

(∑
g 6=j αig

)km
km!

= 2

(m−1)(kh+1)∑
km=(m−1)kh

(∑
g 6=j αig

)km
km!

(19)

Therefore, e
′

1 (kh + 1) can be calculated through the result of
e
′

1 (kh) so that the time complexity of e
′

1 (kh) can be reduced
to O (m). Then we can do the same analysis for the second
term e2 of right hand side of Equation 16:

1

m

K∑
kh=0

(m−1)K∑
km=0

kmI((m− 1)kh − km)p (rij , kh, km)

=
1

m

K∑
kh=0

e
−
∑m
j=1 αij

(αij)
kh

kh!
e
′
2 (kh)

where e
′
2 (kh) = −

∑(m−1)K
km=1

(∑
g 6=j αig

)km
(km−1)!

+

2
∑(m−1)kh
km=1

(∑
g 6=j αig

)km
(km−1)!

, and we can do a similar analysis as
Equation 19.

Algorithm 2 is proposed through the above analysis. By
reducing the time complexity of e

′

1 (kh) and e
′

2 (kh) from
O (mK) to O (m), the time complexity of Algorithm 2
becomes O (mK).



Algorithm 2: Fast Expression Error Calculation
Input: the number m of HGrids per MGrid, αij for each

HGrid rij in the MGrid ri, a hyper-parameter K
Output: the expression error Ee(i, j) of the HGrid rij

1 p2 ← 1; e
′
1, e
′
2 ← 0

2 for km = 0 to (m− 1)K do // initialize e
′
1 and e

′
2

3 p2 ← p2
∑
g 6=j αig

4 e
′
2 ← e

′
2 − p2

5 p2 ← p2/(km + 1)

6 e
′
1 ← e

′
1 − p2

7 p1 ← e−
∑m
j=1 αij

8 p2 ← 1; e1, e2 ← 0
9 for kh = 1 to K do // calculate the value of e1 and e2

10 for km = (m− 1) (kh − 1) to (m− 1) kh do
11 e

′
2 ← e

′
2 + 2p2

12 p2 ← p2
km+1

13 e
′
1 ← e

′
2 + 2p2

14 p2 ← p2
∑
g 6=j αig

15 e1 ← e
′
1p1 + e1

16 p1 ← p1αij
kh

17 e2 ← e
′
2p1 + e2

18 Ee(i, j)← m−1
m

e1 − e2
m

19 return Ee(i, j)

C. Analysis of Model Error

In this section, we can estimate model error with the mean
absolute error for each HGrid. Suppose we use the model f
to predict the event number λ̂i (i.e., λ̂i = f(xi)) for the next
stage of the MGrid through the historical information of the
events X. Let denote the dataset of each MGrid ri as Xi, and
we have ∪ni=1Xi = X. Meanwhile, the number of samples in Xi

for each MGrid ri is |X|n . We define the mean absolute error
of f as MAE(f) (i.e., MAE(f) =

∑
xi∈X |f(xi)−λi|

|X| ), and we have

lim
|X|→∞

MAE (f) = lim
|X|→∞

∑
xi∈X

|f(xi)− λi|

|X|

=
1

n

n∑
i=1

lim
|Xi|→∞

∑
xj∈Xi

|f(xj)− λj |

|Xi|

=
1

n

n∑
i=1

E
(∣∣∣λ̂i − λi∣∣∣)

We can get the relationship between the model error Em (i, j)

and MAE (f):
n∑
i=1

m∑
j=1

Em (i, j) =

n∑
i=1

m∑
j=1

E
(∣∣∣λ̂ij − λij∣∣∣) =

n∑
i=1

mE
(∣∣∣λ̂ij − λij∣∣∣)

=

n∑
i=1

E
(∣∣∣λ̂i − λi∣∣∣) ≈ nMAE(f) (20)

According to Equation 20, the total model error will in-
crease when n increases. However, based on the analyses in
Section III-B, the total expression error will decrease when n
increases. We have proved that the summation of expression
error and model error is a upper bound of real error, which
will first decrease then increase when n increase from 1 to N .
Thus, to minimize the total real error, we will propose two
efficient algorithms to select a proper n in next section.

Algorithm 3: UpperBound (n,N,X,Model)

Input: the number of MGrid n, the number of all HGrids
N , dataset X, a prediction method Model

Output: e(
√
n)

1 m←
⌈√

N
n

⌉2

2 f ←Model (X)
3 e← nMAE (f)
4 divide the global space into N HGrids and estimate the αij

for each HGrid rij
5 for i = 1 to n do
6 for j = 1 to m do
7 e← e+ Ee (i, j) // calculated by Algorithm 2

8 return e

IV. SEARCH FOR OPTIMAL GRID SIZE

From the analysis in Section III, the size of n will affect
expression error and model error of each HGrid rij , which will
further affect the upper bound of real error. A straightforward
algorithm that checks all the values of n can achieve the
optimal solution for OGSS with the complexity of O(

√
N),

which is not efficient. Therefore, we will propose two more
efficient algorithms to solve OGSS in this section. We first
introduce the upper bound calculation of real error.

A. Calculation of Upper Bound for Real Error

In practice, it is difficult to directly estimate the real error
of each HGrid, and then select the optimal partitioning size.
Theorem II.1 proves that the summation of expression error
and model error is an upper bound of real error. Thus, we
can turn to minimize expression error and model error, whose
calculations have been discussed in Section III. Specifically,
we can use Algorithm 2 to calculate expression errors and
Equation 20 to estimate model errors.

Based on the analysis in Section III, we propose our
algorithm showed in Algorithm 3 to calculate e(

√
n) (i.e.,

e(
√
n) =

∑n
i=1

∑m
j=1 Eu (i, j)), which is an approximate problem

of OGSS. The time cost of training the model is considerable
when calculating the error e(√n). Therefore, we will introduce
two algorithms with fewer computations of e(√n).

B. Ternary Search

Without any prior information, we cannot make any opti-
mization of the most straightforward algorithm. Fortunately,
it can be concluded from the analysis in Section III that the
model error will increase and the expression error will de-
crease when n increases. It means there exists an equilibrium
point that minimizes the summation of the expression error
and the model error. Consider an extreme case (i.e., n = 1),
the prediction model only needs to predict the number of
events for the whole space in the future, which can be very
accurate. For example, according to the historical information
of New York City (NYC), the number of spatial events (e.g.,
rider’s order) on weekdays almost keeps a relatively stable
value without dramatic fluctuations. At this time, the model
error is small, but the expression error is considerable. Even if



Algorithm 4: Ternary Search
Input: dataset X, prediction model Model
Output: partition size n that minimize e(

√
n)

1 use the method analyzed in Section III to select N
2 l← 1; r ←

√
N

3 while r − l > 1 do
4 mr ←

⌈
2
3
r + 1

3
l
⌉

5 ml ←
⌊
1
3
r + 2

3
l
⌋

6 e(ml)← UpperBound
(
m2
l , N,X,Model

)
7 e(mr)← UpperBound

(
m2
r, N,X,Model

)
8 if e(ml) > e(mr) then
9 l← ml

10 else
11 r ← mr

12 if e(l) > e(r) then
13 n← r2

14 else
15 n← l2

16 return n

we could know the exact number of orders in the whole NYC
for specific timestamp, it would not help for us to dispatch
orders for drivers in a particular street area of NYC. When
n = N , the forecasting model needs to predict a mass of grids’
events accurately, which will leads to huge model errors due
to the uncertainty of human behavior. While the area of a grid
is very small, the uncertainty of human activity will lead huge
different of prediction. Therefore, we assume that the trend of
e(
√
n) with the increase of n will first go down and then up

(This assumption will be confirmed in Section V-C).
We propose a ternary search algorithm to find the optimal

partition size. Given that n is a perfect square, we need to find
the optimal n among √N numbers. Let l be the minimum of √n
and r be the maximum of √n. The main idea of ternary search
is to take the third-equinox between r and l in each round and
then compare the corresponding error of the two third-equinox
points denoted as mr, ml. If e(mr) > e(ml), let r = mr

for next round; otherwise, let l = ml. The ternary search
algorithm showed in Algorithm 4 will drop 1

3 of possible
values for n each time, which results in the convergence.

If the graph of function e(
√
n) has only one minimum point,

then the ternary search will find the optimal solution. However,
the graph of function e(

√
n) is not always ideal, but the ternary

search algorithm can also find a good solution.
Time Complexity. For a given N , we can mark the algorithm
complexity as T (

√
N). We know that the algorithm will drop 1

3
of the possible values from the above analysis, thus converting
the original problem into a subproblem. Therefore, we have:
T (
√
N) = T ( 2

3

√
N) + 2. We can infer that the time complexity of

Algorithm 4 is O(log
√
N) according to the master theorem.

C. Iterative Method

Although the ternary search algorithm reduces the algorithm
complexity from O(

√
N) to O(log

√
N) based on the traversal

algorithm, the experiments in Section V show that the ternary
search algorithm may miss the optimal global solution in

Algorithm 5: Iterative Method
Input: dataset X, prediction model Model
Output: partition size n that minimize e(

√
n)

1 use the method analyzed in Section III to select N
2 p← 16; b← 4
3 flag ← true
4 while flag do
5 flag ← false
6 for i = b to 1 do
7 e(p+ i)← UpperBound

(
(p+ i)2, N,X,Model

)
8 e(p− i)← UpperBound

(
(p− i)2, N,X,Model

)
9 if e(p) > e(p+ i) then

10 p← p+ i
11 flag ← true
12 break

13 if e(p) < e(p− i) then
14 p← p− i
15 flag ← true
16 break

17 n← p2

18 return n

some situations. Therefore, we will introduce an iteration-
based algorithm with a greater probability of achieving the
optimal n in this section.

Considering that the upper bound on the real error is large
when n is either large or small, the global optimal value for n
tends to be somewhere in the middle. We can roughly choose
the possible value p of the optimal solution through practical
experience and then take this value as the initial position to
conduct a local search. We set a search boundary b, and if the
size of error for the current position is smaller than all possible
regions within the boundary b, the current position is likely
to be the optimal solution. In order to speed up the search
process, we start the current position of searching from the
boundary b to avoid local traversal when e(

√
n) is monotonous.

The details of the algorithm is shown in Algorithm 5.
In Algorithm 5, the choice of the initial position p and the

setting of the search boundary b significantly affect the quality
of its result and its efficiency. Based on the experience from the
existing studies [2], we use the default grid of 2km×2km (i.e.,
approximately 16 × 16) as the corresponding initial position
to speed up the search for the global optimal n. On the other
hand, the search boundary b has an essential influence on the
properties of the solution and the algorithm’s efficiency. When
the search boundary is large, the probability of the algorithm
finding the optimal solution will increase, but the efficiency
of the algorithm execution will decrease. On the contrary, the
algorithm can converge quickly when the search boundary is
small with a small probability of finding the optimal solution.

V. EXPERIMENTAL STUDY

A. Data Set

We use realistic data to study the property of expression
error and model error.



New York Taxi Trip Dataset. New York Taxi and Limou-
sine Commission (TLC) Taxi Trip Data [15] includes the taxi
orders in NYC. We use the Taxi Trip Dataset from January
to May 2013 (i.e., January to April as training set, May 1st
to 27th as validation set, and May 28th as test set). There
are 282,255 orders in test set. The size of the whole space
is 23km × 37km (i.e., −73.77°∼−74.03°, 40.58°∼40.92°).
Since the number of other types of taxis in NYC is much
smaller than that of yellow taxi, we only use the trip data of
yellow taxi. Each order record contains the pick-up and drop-
up locations, the pick-up timestamp, and the driver’s profit.

Chengdu Taxi Trip Dataset. DiDi Chuxing GAIA Open
Dataset [16] provides taxi trips in Chengdu, China. We use
the taxi trip records from November 1st, 2016 to November
25th, 2016 as training set, November 26th to 29th, 2016 as
validation set and November 30th, 2016 as test data set. There
are 238,868 orders in test set. The size of Chengdu is also
23km× 37km (i.e., 103.93°∼104.19°, 30.50°∼30.84°).

Xi’an Taxi Trip Dataset. DiDi Chuxing GAIA Open
Dataset [16] also provides a dataset of taxi trips in Xi’an,
China. We use the taxi trip records from October 1st, 2016
to October 25th, 2016 as training data set, October 26th to
29th, 2016 as validation set and October 30th, 2016 as test
set. There are 109,753 orders in test set. The size of Xi’an is
8.5km× 8.6km (i.e., 108.91°∼109.00°, 34.20°∼34.28°).

Due to the space limitation, please refer to Appendix A of
our technical report [17] for the distributions of the datasets.

B. Experiment Configuration

We use three prediction models to predict the numbers of
future spatial events in different regions:

Multilayer Perceptron (MLP) [18]: We use a neural
network consisting of six fully connected layers. The numbers
of hidden units on each layer are 1024, 1024, 512, 512, 256
and 256. When the size of MGrid is n, we can get the model
input (8,

√
n,
√
n), which represents the number of all regions

in nearest eight time slots, and we use a flatten layer to map
the original input to a vector with the size of 8× n before it
is fed into the model.

DeepST [6]: DeepST divides a day into 48 time slots (i.e.,
30 minutes per time slot) and calculates inflow and outflow
of the events. As a result, DeepST can calculate the number
of events in the next time slot by predicting the inflow and
outflow status of events in the next time slot. It uses three
types of historical information: closeness, period and trend.
Closeness expresses the number of events in the nearest eight
time slots, period expresses the number of events at the same
time slot of the previous eight days, and trend represents
the number of events at the same time slot of the previous
eight weeks. DeepST mainly utilizes the spatial information
to predict the spatial events for next time slot.

Dmvst-Net [10]: Dmvst-Net models the correlations be-
tween future demand and recent historical data via long short
term memory (LSTM) and models the local spatial correlation
via convolutional neural network (CNN). Moreover, Dmvst-
Net models the correlations among regions sharing similar

TABLE II: Experiment Setting for Training Model
Symbol Setting
N 128× 128
n 4×4,. . . ,16×16,. . . ,75×75,76×76

time slot 30 minutes
prediction model MLP, DeepST, Dmvst-Net

temporal patterns. Compared with DeepST, Dmvst-Net utilizes
both spatial and temporal information, which leads to a better
performance of the prediction model.

Since the size of model input for DeepST and Dmvst-Net is
different in the experiment, we need to map the original input
to the same shape to ensure that the model structure does not
change significantly through a conditional deconvolution layer.
When the number of MGrid is n, that is, the input dimension of
the model is (2,

√
n,
√
n), the size k of the convolution kernel

and step size s of the convolutional layer can be obtained
through the following formula:

s =

⌊
shape

n− 1

⌋
k = shape− s (n− 1)

Here, we set shape = 128 in our experiment. Finally, we add
a convolution layer with the same stride and the same size as
the deconvolution layer as the last layer of DeepST.

As the dataset used in this experiment is the Taxi Trip
Dataset, Order Count Bias is used as the metric of model
error, expression error and real error in this experiment.
Model error represents the difference between the predicted
order quantity and the estimated order quantity; expression
error represents the difference between the estimated order
quantity and the actual order quantity; real error represents the
difference between the actual order quantity and the predicted
order quantity. Considering that we will constantly change
the grid size in the experiment, it is meaningless to consider
the error of a single grid; therefore, the errors we discuss in
subsequent experiments are the summation of errors of all
grids, unless otherwise specified.

In order to calculate the expression error of a HGrid, we
need to estimate the mean number of events αij for the grid
rij in advance. Over a long period, grid environments will
change significantly so that the number of events for the
same grid does not follow the same distribution. On the other
hand, when sample size is small, the estimate of the mean
number for events will produce a considerable bias. Therefore,
when estimating the mean number of events, we need to
choose the appropriate range of adoption. At the same time,
considering the remarkable difference about the number of
events at different periods in a day and the great difference in
the willingness of people to travel on weekdays and workdays,
this experiment takes the average number of events at the same
period of all workdays in last one month as the mean number
αij of events in the HGrid rij . In subsequent experiments, we
estimate αij by using the number of events between 8 : 00
A.M. and 8 : 30 A.M. as default unless otherwise stated.
The above experimental settings are summarized in Table II
where the default parameters are in bold. Our experiments are
run on AMD Ryzen 5-5600H with 32 GB RAM and GeForce
RTX 3050 in Python, while LS, POLAR and DAIF in Java.



Fig. 3: Effect of n on Expression
Error in Different Cities

(a) Chengdu (b) NYC (c) Xi’an

Fig. 4: Effect of n on the Model Error

(a) Real Error in Xi’an (b) Real Error in Chengdu (c) Real Error in NYC

Fig. 5: Effect of n on Real Error in Different Cities with Different Prediction Models

C. Relationship between Real Error and n

In this section, we mainly show the effect of n on the
expression error and the model error as analyzed in Section
III and verify that real error has the same change trend as its
upper bound.
Expression Error. We use Algorithm 2 to calculate the
expression errors in different cities, which all decrease with
the increase of n as shown in Figure 3. Since orders in NYC
are more evenly distributed than in Chengdu, therefore, the
expression error of Chengdu is smaller than that of NYC when
n is the same. Additionally, the order quantity of Xi’an is much
smaller than that of the other two cities. Meanwhile, the order
distribution of Xi’an is more uniformly distributed compared
with the other two cities. As a result, the expression error of
Xi’an is much smaller than that of other cities. Due to space
constraints, we analyze the relationship between expression
error and the uniformity of order distribution in detail in
Appendix B in our technical report [17].
Model Error. We test the performance of three prediction
models (i.e., MLP, DeepST and Dmvst-Net) on the datasets of
NYC and Chengdu as shown in Figures 4. The experimental
results show that the model error of the three prediction models
all increase with the increase of n on the two data sets. The
model errors of DeepST and Dmvst-Net are much smaller
than that of MLP with relatively simple model structure, while
Dmvst-Net makes use of time information of historical data
so that it performs better than DeepST.
Real Error. Figure 5 shows the relationship between real error
and its upper bound in different cities while using different
prediction models. The real error and its upper bound have
the same trend, all falling first and then rising while changing
n. Comparing with Chengdu, the expression error of NYC
is larger, which makes the optimal n of NYC larger than

that of Chengdu when the same prediction model is used.
For example, the real error of NYC based on Dmvst-Net is
also small when n is 30 × 30 as shown in Figure 5(c). On
the other hand, the prediction model with higher accuracy
makes the real error significantly smaller, and also leads to the
increase of n that minimizes the real error. Taking NYC as an
example, the optimal value of n is 23 when using Dmvst-Net
as prediction model; when the prediction model is DeepST,
the optimal value of n is 16; when the prediction model is
MLP, the optimal value of n is 13. In the case of models
with high accuracy, a larger n helps to reduce expression
error. Moreover, when we use MLP as a prediction model to
forecast the number of orders in Chengdu, Figure 5(b) shows
that the real error increases varying n as the model error plays
a dominant role in the real error while the expression error of
Chengdu is small and the model error of MLP is large. In
addition, because the space size of the Xi’an dataset is much
smaller than that of Chengdu and NYC, the optimal n of Xi’an
is smaller than that of the other two cities.

D. Case Study on Effect of Minimizing Real Error

In this section, we explore the effect of real error on two
crowdsourcing problems (i.e., task assignment [14], [1] and
route planning [2]). We test two prediction models: Dmvst-
Net and DeepST in the experiment.

Task Assignment. Task assignment refers to sending
location-based requests to workers, based on their current
positions, such as ride-hailing. We use two state-of-the-art
prediction-based task assignment algorithms (i.e., LS [14],
POLAR [1]) to dispatch orders under different values of n.
The goal of LS is to maximize total revenue while the goal
of POLAR is to maximize the number of served orders. Thus,
we use the total revenue and order quantity as metrics for



(a) Order Quantity (b) Total Revenue
Fig. 6: Effect of n on Task Assignment (NYC)

(a) Order Quantity (b) Total Revenue
Fig. 7: Effect of n on Task Assignment (Chengdu)

the two algorithms. We compare the performance of the two
algorithms using different prediction models in this paper.
Specific experimental setup in this paper is as the same as
the default setting in our previous work [14].

Figure 6∼8 show that total revenue and order quantity of the
prediction-based dispatching algorithms vary under different
values of n. When using the predicted results, both algorithms
show an increasing first and then decreasing trend in revenue,
because the real error is large when n is too small or too
large. When POLAR and LS use real order data such that
the model error becomes 0, the real error is equivalent to the
expression error. It means that the real error decreases as n
increases. Therefore, the performance of Polar and LS will not
decrease due to the large n when using the real order data,
which is also consistent with the changing trend of the real
error. In addition, the order distribution of Xi’an is more even
than that of the other two cities because of its smaller area.
Therefore, the optimal n in Xi’an is less than that in the other
two cities. In short, the experimental results verify that the real
error is an important factor affecting the performance of the
algorithms in task assignment.

Route Planning. Route planning is a central issue in shared
mobility applications such as ride-sharing, food delivery and
crowdsourced parcel delivery. We use the state-of-the-art al-
gorithm, DAIF [2], to verify the effect of n on route planning
problem. We use the default parameters of the original paper
[2] in this experiment, and take the number of served requests
and the unified cost as the metrics of DAIF. Figure 9 shows
that the number of served requests of DAIF first increases
then decreases when n increases. The unified cost of DAIF
is minimized when n = 16× 16. Using the actual number of
orders, DAIF gets better performance with a large n. Although
route planning problem is affected less by real error compared
with task assignment problem, the size of grid affects the
performance of prediction-based algorithms.

Table III shows the improvement of the original algorithm

(a) Order Quantity (b) Total Revenue
Fig. 8: Effect of n on Task Assignment (Xi’an)

(a) Served Requests (b) Unified Cost
Fig. 9: Effect of n on Route Planning (NYC)

by selecting the optimal grid size with DeepST as the predic-
tion model on NYC. Original n represents the default value
of n set in [1], [14], [2], while optimal n denotes the optimal
grid size found by our GridTuner. The results show that both
POLAR and DAIF can achieve performance gains with the
optimal grid size. Due to the selection of the default n in the
existing paper [1] is close to the optimal n, the performance
of LS has no obvious improvement.

TABLE III: Promotion of the prediction-based algorithms
Metric Algorithm Optimal n Original n Improve ratio
Served Order Number POLAR 16× 16 50× 50 13.6%
Total Revenue POLAR 16× 16 50× 50 8.97%
Total Revenue LS 20× 20 16× 16 0.13%
Served Order Number LS 20× 20 16× 16 0.7%
Unified Cost DAIF 16× 16 12× 12 0.76%
Served Requests DAIF 20× 20 12× 12 3.35%

E. Experiment Result of Optimization Searching Algorithms

Since the mean of the event quantity in the same grid varies
in different periods of a day, the expression error of each time
slot is different, leading to the different optimal solutions of
each time slot. In this section, we use the algorithms proposed
in Section IV to calculate the optimal partition scheme of
different cities and compare the performance of them with the
Brute-force Search (i.e., traverses all the values to find the
optimal n). We use three indicators to measure the quality
of the solution found by the algorithm and the efficiency
of the algorithm: cost denotes the cost of time; probability
denotes the probability of obtaining the optimal solution (i.e.,
the number of finding out the optimal solution divided by
the number of time slots); optimal ratio (OR) is denoted as
OR = oa

or
, where or denotes the optimal order count served

by driver while using the POLAR as dispatching algorithm in
NYC and oa represents the results optimized by the algorithm.

The experimental results in Table IV show that Ternary
Search and Iterative Method both can greatly reduce the time



TABLE IV: Performance of the algorithms.
City Algorithm Cost (h) Probability OR
NYC Ternary Search 7.03 52.08% 97.83%
NYC Iterative Method 5.58 81.25% 98.77%
NYC Brute-force Search 47.43 100.00% 100.00%
Chengdu Ternary Search 6.32 70.83% 98.35%
Chengdu Iterative Method 4.53 95.83% 99.77%
Chengdu Brute-force Search 43.26 100.00% 100.00%
Xi’an Ternary Search 3.90 60.42% 97.98%
Xi’an Iterative Method 3.31 91.67% 99.57%
Xi’an Brute-force Search 21.76 100.00% 100.00%

cost of finding the optimal solution compared with the Brute-
force Search. Meanwhile, both algorithms can find the global
optimal solution with high probabilities. With the reasonable
choice of bound and initial position of Iterative Method, its
execution efficiency and probability of finding the optimal
solution are better than that of Ternary Search. According to
Table IV, sub-optimal solutions achieved by Ternary Search
are at most 3% less than the optimal results (and 1.5% for
Iterative Method), which shows the effectiveness of our grid
size selection algorithms.
Summary: The experimental results show that the larger
real error often leads to the decrease of the payoff of the
dispatching algorithms. At the same time, Ternary Search and
Iterative Method proposed in this paper can effectively find the
optimal solution to the OGSS by minimizing the upper bound
of the real error. Furthermore, this paper improves the effect
of the original algorithm by selecting a reasonable size n.
Specially, the performance of POLAR improves by 13.6% on
served order number and 8.97% on total revenue. Finally, this
paper also studies the influence of different traffic prediction
algorithms on the optimal size of MGrids. The results show
that when the accuracy of the prediction algorithm is high, the
whole space can be divided into more MGrids to reduce the
expression error. On the contrary, when the accuracy of the
prediction algorithm is low, we need to make the area of a
MGrid larger to reduce the model error.

VI. RELATED WORK

For many online task assignment systems and frameworks
[1], [3], [19], [2], [20], they face more tremendous challenges
than the offline task assignment due to the lack of follow-up
order information. However, the emergence of traffic predic-
tion technology [6], [10], [21] has solved this problem well.
With the continuous improvement of these traffic forecasting
work, the demand-aware algorithm [1], [3], [2], [22], [20] for
task assignment has more advantages than some traditional
algorithm [23], [24], [25], [26].

Several traffic prediction methods [6], [10], [21], [27], [28]
divides the entire space into grids based on latitude and
longitude and then predicts the number of orders in each
region. The residual network is introduced into the traffic
prediction in [6] to better reduce the deviation between the
predicted results and the actual results. [10] tries to combine
different perspectives to predict future order data, including
time perspective, space perspective, and semantic perspective.
The results show that the multi-view spatiotemporal network

can improve the prediction performance of the model. In
addition, an attention mechanism is introduced in [21] to
mine the dynamic spatiotemporal correlation of traffic data
to optimize the prediction performance.

The work [3] proposed a framework based on queuing
theory to guide the platform for order dispatching, which used
queuing theory combined with the distribution of future orders
and drivers in the region to predict the waiting time of drivers
before they received the next order after sending the current
order to the destination. In addition, a two-stage dispatching
model is proposed in [1]. In the first stage, the platform will
pre-assign drivers based on the predicted number of regional
orders and direct them to the likely location of the orders,
while in the second stage, it will assign the actual orders.

This work mainly focuses on how to divide model grid to
balance the model error and the expression error to improve
the effectiveness of the order dispatching algorithm based on
supply and demand prediction.

VII. CONCLUSION

In this paper, we propose a fine-grained measure of predic-
tion bias, namely real error, and investigate how to minimize it.
Real error is mainly composed of expression error and model
error. Expression error is caused by using the order quantity
of large regions to estimate the number of spatial events
of HGrids. Model error is the inner error of the prediction
model. We show that the summation of expression error
and model error is the upper bound of real error. We solve
expression error and model error, and analyze the relationship
between them and MGrids. Then, we propose two algorithms
to minimize real error as much as possible by minimizing
its upper bound. Finally, we verify the effectiveness of our
algorithm through experiments and analyze the role of real
error for spatiotemporal prediction models.
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