TrendSharing: a Framework to Discover and Follow
the Trends for Shared Mobility Services

Jiexi Zhan ', Han Wu ', Peng Cheng !, Libin Zheng 2, Lei Chen ®, Chen Jason Zhang *, Xuemin Lin ®, Wenjie Zhang °

LEast China Normal University, Shanghai, China
2Sun Yat-sen University, Guangzhou, China
3HKUST(GZ) and HKUST, Guangzhou & Hong Kong SAR, China
4The Hong Kong Polytechnic University, HK SAR, China
Shanghai Jiaotong University, Shanghai, China
8The University of New South Wales, Sydney, Australia
{jxzhan, han.wu} @stu.ecnu.edu.cn; pcheng@sei.ecnu.edu.cn; zhenglb6 @mail.sysu.edu.cn;
leichen @cse.ust.hk; jason-c.zhang @polyu.edu.hk; xuemin.lin@gmail.com; wenjie.zhang @unsw.edu.au

Abstract—With the development of ubiquitous smart devices,
shared mobility services, such as food delivery, ridesharing and
crowdsourced parcel delivery, and the related problems, such as
task assignment and route planning have drawn much attention
from academia and industry. Specifically, shared mobility services
enable one worker to deliver more than one package/passenger
together such that their routes can share some common sub-
routes. Tardiness (the exceeded time) can harm users’ experience
and reduce the revenue of workers and platforms, which is not
well handled in the existing studies. In this paper, we propose a
framework, TrendSharing, to minimize the total tardiness when
serving all tasks. In TrendSharing, we first build a flow tree
to group tasks together. Then, we propose a concept of trend,
which represents a group of tasks with high sharability in the flow
tree. Furthermore, we devise a decision factor c-score to properly
select the trend from the flow tree. In addition, we devise an
indicator k-regret to quantify the likelihood of tardiness for each
task and devise a greedy algorithm to conduct task assignment.
We observe that the insertion operation that is widely used by
existing works has little effect on the objective of minimizing
total tardiness. Thus, we adopt a simple yet effective strategy,
which will continuously append newly planned routes to the
workers’ existing routes. Moreover, we design an algorithm to
plan a route for the trend with an approximation ratio of 2.5.
Through extensive experiments, we demonstrate the efficiency
and effectiveness of our proposed approaches on real datasets.

I. INTRODUCTION

The ubiquitous smart devices and advanced navigation
systems collaboratively provide us a large amount of spatial
data and consequently spawn a variety of modern applications
such as ridesharing (e.g., Uber [1], Didi [2], Lyft [3]), food
delivery (e.g., Grubhub [4], Meituan [5], Eleme [6]), package
delivery (e.g., UPS [7], Cainiao [8]) and so on. Users are
able to submit tasks which specify the origins and destinations
to these platforms. The platforms will estimate the expected
delivery time (EDT) of each task and return it to the users.
Periodically, the platforms will assign the newly arrived tasks
to the available workers. The workers need to arrive at the
origins to pick up the package/passengers and deliver them
to the destinations. Since each worker can accept multiple
tasks at the same time, after the task assignment step, the

(o]
PR S
=y
2
5
&
® W.
d, 2 0 4 =Nt

Fig. 1. A motivation example

platforms also need to plan routes for the workers so that they
can complete the assigned tasks on time.

However, in real life, the number of workers is limited.
Thus, it is inevitable that some tasks will be tardy, especially
when the weather is poor, the traffic is congest and the
demand of users is overwhelming. Nobody likes tardiness,
since it will severely affect the user experience and reduce
the revenue of workers and platforms. To alleviate the burden
of workers while satisfying users’ real-time requirements, in
this paper, we study the problem of minimizing total tardiness
when serving all tasks. To the best of our knowledge, none
of existing works considers the tardiness as the optimization
objective. Next, we will use the following example to illustrate
our motivation.

Example 1 (Motivation Example). As shown in Figurel[l| there
are two workers wy, we and two tasks t1 and to. The origins
and destinations are denoted by o; and d; respectively (i =
1,2). The numbers on the edges represent the travel distance.
Assume that both tasks are submitted to the platform at time
0 and the expected delivery time of them are both 6. And the
speed of the two workers are both 1. If we assign t1 to wo
and to to wy, both tasks will be delivered on time, and the
total tardiness will be zero. However, if the objective is to
minimize total travel time like existing works, we may assign
t1 to wy and ty to wg, which will result in a shorter total
travel time (11 < 12). But in this case, to will be tardy and
the total tardiness will be 1, which is worse than the previous
assignment. Thus, it is vital to devise algorithms specific to
the tardiness.

This minimization problem is composed of two challenging
subproblems: task assignment problem and route planning
problem. For the task assignment problem, most existing
works model it as a bipartite graph matching problem and
regard the maximization of the number of served tasks as the
primary objective [9], [LO], [L1], [12]. Usually, there will be
a secondary objective, which could be maximizing the total
revenue of the platform [13], [14], [15], [16] or minimizing the
total travel cost of the workers [9]], [12]]. To solve this matching
problem, there are mainly two kinds of solutions. One is the
maximum flow based solutions, which reduce the problem to
the maximum flow problem and solve it by classical algorithms
(e.g., Ford-Fulkerson algorithm [[17]) [9]], [[12]]. The other one
is greedy solutions, which will greedily pick the most valuable
task-worker pair according to the objectives [18], [19]. Since
all tasks need to be served in our problem, and there is no
limit of the workers’ working areas, each task may have many
candidate workers, which will result in a dense bipartite graph.
Using maximum flow algorithms on such a graph is quite time-
consuming. Thus, we explore greedy solutions.

Intuitively, tasks in the area with plenty of workers are
less likely to time out, but tasks in remote areas have a
higher probability of being tardy. Based on this observation,
we greedily pick the task that is more easily to be tardy
and assign it to the worker who can serve it with minimal
tardiness, ties are broken by minimal travel time. We devise an
indicator called k-regret to quantify the likelihood of tardiness
for each task and use it to determine the order of tasks being
selected. What’s more, tasks with high sharability can be
grouped together and assigned to the same worker, which
will significantly improve the efficiency of workers and reduce
the possibility of tardiness. We leverage a spatial index called
hierarchically well-separated tree (HST) to capture the spatial
characteristics of tasks and propose a novel structure called
flow tree to group tasks together. Then, we define a concept of
trend, which represents a group of tasks with high sharability
in the flow tree. To select the trend from the flow tree, we
propose a decision factor e-score to guide the procedure.

For the route planning problem, most existing works rely
on a key operation called insertion, which can insert the origin
and destination of a task into a worker’s existing route with
minimal increased distance. It was first proposed by Jaw et
al. in 1986 to solve the dial-a-ride problem [20]. Recently,
it is widely used in large-scale ridesharing problems to incre-
mentally update a partial route, which can avoid the expensive
computational cost of reordering and obtain a satisfying result
on the objective of minimizing total distance [21]], [22],
(23], [24], [25], [26], [27]. Although it performs well on the
ridesharing problems, it has little effect in our problem through
our experiments. The main reason is that our problem has no
deadline constraint, namely, we can serve a task even though
the actual delivery time exceeds its expected delivery time.
Thus, the optimal insertion position found by the operation is
likely to postpone the arrival time of the later positions and
greatly increase the total tardiness.

To overcome this issue, one straightforward idea is to

change the objective of the insertion operation to minimize
increased tardiness. However, the time overhead of finding
the optimal position will be quite large because we need to
enumerate all possible positions (O(n?)), and for each of them,
we need to recalculate the arrival time of the positions behind it
and calculate the increased tardiness (O(n)). Thus, the overall
time complexity is O(n?) (n is the number of positions in the
existing route). The technique used to optimize the original
insertion operation [25] cannot be applied to the modified
version. Therefore, the insertion operation is not suitable for
our problem. We observe that simply appending newly planned
route into the worker’s existing route can achieve a good result
in terms of tardiness. The main reason is that append will
not delay the tasks assigned earlier. Moreover, since we have
selected tasks in a trend as an assignment unit, workers can
quickly complete assigned tasks first, then serve new tasks as
early as possible. To plan a route for the tasks in a trend, we
propose a route planning algorithm with theoretical guarantee.
To summarize, we make the following contributions:

« We consider the tardiness as the optimization objective,
propose a Minimum Tardiness Task Assignment and
Route Planning (MTARP) problem and prove it is not
only NP-hard, but also inapproximable in Section [[TI}

o We propose the flow tree to group tasks together and de-
vise a decision factor e-score to select the trend from the
flow tree as an assignment unit in Section Then, we
take each task’s likelihood of tardiness into consideration
and design a greedy algorithm to conduct task assignment
in Section [V]

« We take the advantage of trend and design an effective
route planning algorithm with theoretical guarantee for
the trend in Section [Vl

« We have conducted extensive experiments on real datasets
to show the efficiency and effectiveness of our proposed
solutions in Section [VIIl

In addition, we review and compare related works in Sec-
tion [l and conclude our work in Section

II. RELATED WORK
A. Traditional Routing Problems

The study of task assignment and route planning problem
can be traced back to the Vehicle Routing Problem (VRP)
proposed by George Dantzig and John Ramser in 1959, which
needs to find a set of routes for a fleet of vehicles to deliver
commodities from a depot to the customers with minimum
total travel cost [28]. This is a classical combinatorial opti-
mization and NP-hard problem [29], [30]]. Pickup and Delivery
Problem (PDP) is an important extension of VRP, which needs
to transport commodities between origins and destinations
with minimum total travel cost [31]], [32]. Dial-a-ride Problem
(DARP) is a variant of the one-to-one PDP, which aims to
plan a set of minimum cost vehicle routes capable of accom-
modating as many users as possible [33]]. These problems are
often modeled as integer programming problems and solved
by exact algorithms (e.g., branch and bound [34]], branch and

cut [35], etc.) or heuristic algorithms (e.g., large neighborhood
search [36], [37], [38], tabu search [39], etc.). These methods
are time-consuming, and can only solve small instances.

B. Large-Scale Ridesharing Problems

Most existing works on ridesharing have deadline con-
straints. A task must be completed before its deadline, other-
wise, will be rejected. Ma et al. propose a ridesharing platform
called T-share and try to maximize the number of served tasks
and minimize total travel distance [21]]. They use the grid index
to partition the road network and reduce the time cost of the
shortest path computation. Based on the grid index, they devise
a double-end search algorithm to filer the available workers
and use the insertion operation to choose the feasible worker
with minimal increased distance to accept the newly arrived
task. Thangaraj et al. also propose a ridesharing platform
called XAR and devise a hierarchical index to mitigate the
shortcoming of grid index and integrate a multi-model trip
planner to build an integrated transportation system [24].

Huang et al. propose a data structure called kinetic tree that
maintains all possible routes of a worker [23]. When a new
task is assigned to the worker, the tree needs to update and
prune impossible routes. Kinetic tree can enhance efficiency by
avoiding recomputing the possible routes from scratch when
inserting a new task. However, it cannot be applied in problems
without deadline constraints like ours because the prune step
is highly dependent on the deadlines of tasks. Deng et al.
model the task assignment problem as a bipartite matching
problem and leverage the maximum flow algorithm to find a
maximum matching. To accelerate the algorithm, they propose
a partitioning-based algorithm to reduce the number of edges
in a bipartite graph. They also use the insertion operation to
schedule the assigned tasks [12]]. Tong et al. propose a unified
cost function that can unify the objectives of minimizing total
travel distance, maximizing the number of served tasks and
total revenue of the platform by one formula [25]. Moreover,
they optimize the insertion operation to O(n) time complexity
by dynamic programming. Wang et al. take the future demand
into consideration and extend the insertion operation with
O(n?) time complexity to balance the demand and supply,
which will gain the largest profit for a long period [27]. Zeng
et al. aim to maximize the total revenue of the platform.
They prove that a simple greedy algorithm that always picks
the most valuable group of tasks has an approximation ratio
of 0.5. To reduce the time complexity of enumerating all
combinations of tasks, they further propose a data structure
called additive tree to prune useless combinations [[16].

Yuan et. al. survey the recent traffic generator for simulation
evaluation, including the ridesharing scenarios [40].

C. Machine Scheduling Problems

Minimizing total tardiness is a commonly used objective in
machine scheduling problems [41]], [42], [43], [44]. However,
there are two major differences between our problem and
machine scheduling problems: 1) the processing time of jobs in
machine scheduling problems are known in prior and will not

TABLE 1
SUMMARY OF NOTATIONS USED IN OUR WORK.

Notation Meaning

w A set of m workers

l; Current location of worker w;
cap; Capacity of worker w;

spd; Speed of worker w;

S; Current route of worker w;

0j,d; Origin and destination of task ¢;

rj,ed;j,ad; | Release time, expected and actual delivery times of ¢;
wei; Weight of task ¢;

wj k-regret of task t;, defined in equation

At Batch interval

be affected by the order being processed, but the processing
time of tasks in our problem is not fixed, which is jointly
determined by tasks’ and workers’ real-time locations; 2)
the machines are static and homogeneous, but the workers
will move around at different speeds according to previously
planned routes.

III. PROBLEM DEFINITION

The Minimum Tardiness Task Assignment and Route
Planning (MTARP) problem studied in this paper is a dy-
namic problem, namely, tasks will continuously arrive as the
time goes by. Generally, there are two modes for dynamic
problems [45]. One is the online mode, which will assign a
worker to a task immediately once the task has arrived; the
other one is the batch-based mode, which will assign tasks at
regular intervals. We adopt the batch-based mode, because it
is more suitable for the real scenarios and more general (the
online mode can be regarded as a special case of the batch-
based mode, that is, there is at most one task in each batch).
We first define notations related to the MTARP problem.

A. Preliminaries

Definition 1 (Workers). Let W = {wy,ws,...,w,} denote a
set of n workers. Each worker w; € W is initially at location
l; and maintains his/her current route S; that composed of a
series of locations to be visited. Moreover, each worker w;
has his/her own capacity cap;, which is the maximum sum
of tasks’ weight that he/she can carry at the same time, and
travels with a speed of spd; m/s.

Definition 2 (Tasks). Let T = {¢1,ta, ..., denote a set of
m tasks. Each task ¢; € T is released at timestamp r; from the
requester with the origin o;, the destination d;, a weight wei;
and the expected delivery time ed;. Let the actual delivery
time of task ¢; be ad;, then the tardiness is calculated as:

tardiness = max(0, ad; — ed;)

Definition 3 (Route). A route S; = [19,1}, ..., 1] of a worker

w; consists of a series of temporally-ordered locations. [{ =

l; is the initial location of w;. I} to ¥ are the origins and

destinations of assigned tasks. A route .S; is valid if and only
if:

« (capacity constraint) The total weight of tasks in S; is no

more than the capacity of w; at any time;

Trend Based Task Assignment

|
Flow Tree Construction 1

[Tasks Flow Tree \\I !

1 H 1

| ‘\ X D

i — —>

1 >¢ i

! 1

i |

@ Discover the trends
@ Follow the trends

. # T
" Trends Workers * .~ Existing Route 1
1

Trend Based Route Planning

- . , \
1 I >@> s —>@—— .. B
=y | ey T He N e ¥
Y ! !
.) ' !
T e e T 2a e ¥
I ; :
o : !
- : !
1 1 - . 1
VT Tt e He e e >
Y BN 1 4

Fig. 2. An overview of the TrendSharing framework

e (order constraint) For any task t;, its origin o; appears
before destination d; in S;.

Definition 4 (Batch). Let B; denote the ith batch with an
interval At. Suppose B; starts at timestamp t*, then, it will
end at timestamp ¢’ + At. The tasks whose release time is
within [t?, ¢ + At) will be assigned in the ith batch.

Definition 5 (Metric Space). A metric space M is composed
of a set of points V' and a function d. d(x,y) represents the
distance of a pair of points x,y € V and satisfies the following
three properties:

o (identity) d(z,y) > 0 and d(z,y) =0 < x =y;

« (symmetry) d(z,y) = d(y, 2):

« (triangle inequality) d(z,y) + d(y, z) < d(z, 2).
Definition 6 (Minimum Tardiness Task Assignment and Route
Planning (MTARP) Problem). Given a set of workers W, a
set of tasks 7" and a batch interval At (the system conducts a
task assignment every At seconds), MTARP problem aims to

plan a route S; for each worker w; € W such that the total
tardiness of all tasks is minimized:

min Z maz (0, ad; — ed;)
t;€T
and to satisfy the following constraints:
o Tasks have been assigned cannot be reassigned to a
different worker;

o The planned routes must be valid, namely, they cannot
violate the capacity and order constraints.

B. Hardness Analysis

Theorem IIL.1. The MTARP problem is NP-hard and inap-
proximable.

Proof. We will prove the above theorem through a reduction
from the minimizing average flow time for online dial-a-
ride problem (F,,,-OLDARP) [46], which is NP-hard and
inapproximable.

Given a metric space M =< V,d >, an instance
wva—OLDARP Of Fyg-OLDARP in M consists of a single
server s and a set of m requests R = {ry,72,...,7y}. Each
reqeust is a triple r; =< t;,0;,d; >, where t; is the release
time, o; is the origin and d; is the destination. It is assumed that
{r1,r2,...,7m} is given in order of non-decreasing release
times, namely 0 < t; < t5 < ... < t,,. The server s is
located at origin o € V' at time 0 and can move at constant
unit speed spd. It will fulfill all requests, and it can carry at
most C' objects at a time. Let the completion time of request

Ir

r; be C;, the objective of Ip

avg

_OLDARP 18 to minimize the
average flow time, i.e. min L Y™ C; —¢;.

From above definition, we can construct an instance of
MTARP problem Iyvirarp from IFavgfoLDARP by the fol-
lowing steps: 1) create a single worker w who is initially at
position o at time 0 and the speed and capacity is equal to
spd and C' respectively; 2) create a set of tasks 7', |T'|=|R|
and for each t; € T, r; = t;,ed; = t;; 3) use the same
metric space M. By setting the expected delivery time equal
to corresponding release time of all tasks, the objective of
Inrarp is essentially the same as Ir,,,—orparp because
we just need to divide the result of Iy;rarp by the number
of tasks m, then we can get the result of IFm)q_OLDARP.
Since Fyug-OLDARP is reducible to MTARP problem that
is NP-hard and inapproximable, we can conclude that MTARP
problem is also NP-hard and inapproximable. O

C. An Overview of the TrendSharing Framework

As shown in Figure 2] the framework consists of three com-
ponents: flow tree construction, trend based task assignment
and trend based route planning.

We first leverage a spatial index HST to cluster the origins
and destinations of tasks together. Then, we build a flow tree in
accordance with the HST to group tasks together. Each node in
the tree contains a set of tasks whose origins and destinations
are within the same circular region, respectively. To properly
select the node in the flow tree, we propose a concept of trend
and devise a decision factor e-score to discover the trends.

Then, we devise an indicator k-regret to quantify the like-
lihood of tardiness for each task and determine the order of
tasks being selected. For each selected task, we find the worker
who can serve it with minimal tardiness, then select the trend
that contains the select task and assign all tasks in the trend
to the worker.

Finally, benefit from the property of trend, we design an
effective route planning algorithm for tasks within a trend
with an approximation ratio of 2.5 to the optimum. Since the
insertion operation with the objective of minimizing detour is
likely to postpone the delivery time of the existing tasks and
greatly increase the total tardiness, and the insertion operation
with the objective of minimizing increased tardiness is too
time-consuming. We adopt the strategy of appending the newly
planned route to the existing route, which is quite efficient. Our
experiment demonstrates that this strategy is quite effective
with regard to the objective of minimizing total tardiness.

Algorithm 1: HST Construction Procedure

Input: A metric space M = (V,d)
Output: A HST T
sample a permutation 7 of V' and S from [0.5, 1)
A = may; v,evd(vi,v;), H < [loga A]
NSy + {{V}}
for i < H —1to 0 do
foreach node N € NS; 1 do
for j <~ 0ton—1do
N« {ve N |d(r[j],v) <mi}
add N’ to NS; and remove v € N’ from N

[P I NI S VI SR

—
=l

return 7 < NSg, NSg_1,..., NSy

In the batch-based mode, we consider the tasks released
within this batch as a set, and build an HST and flow tree
for the tasks in this set, ensuring that tasks fulfilling the trend
similarity requirement are categorized together. Then, in the
order of k-regret from large to small, we allocate the most
suitable worker and plan the route for a task or task group.
We update the worker’s current location at the end of each
batch.

IV. DISCOVER THE TREND

Tasks with high sharability can be grouped together and
assigned to the same worker, which will significantly im-
prove the efficiency of workers and reduce the possibility
of tardiness. To make full use of the spatial features of
tasks, in this section, we formally model the sharability of
tasks. Specifically, we first briefly introduce a spatial index
called HST to capture the spatial characteristics of tasks in
Section Then, we propose a new tree structure termed
flow tree to group tasks together in Section Finally, we
propose a concept of trend to model the sharability of tasks
and devise a decision factor e-score to properly select the trend
from the flow tree in Section [V-Cl

A. Spatial Index HST

HST was proposed by Bartal in 1996 [47]. It can embed
any metric space into a tree space, which guarantees that the
distance stretch is tightly bounded by O(logn) [48]. This
property is used by many works to design approximation
algorithms [48]], [26], [49], [S0]. However, since our problem
is inapproximable, we mainly use it to capture the spatial char-
acteristics of the tasks and better guide the task assignment.
Next, we introduce the HST construction procedure.

As shown in Algorithm[l] given a metric space M = (V, d),
we first choose a random permutation 7 of the points in V'
and a parameter 3 uniformly from [0.5,1] in line 1. Then we
calculate the diameter of V' to determine the height of the
tree in line 2. After that, we initialize the root of HST, which
contains all points in V' in line 3. Nodes in the same level
are disjoint and the union of them includes all points in V.
From lines 4 to 12, we iteratively build the tree through a
top-down style. In the ith level, we first determine the radius

A !
,{1,8) g 04(5,8) eds: 6
R wa(#75)

7l d,(2,7) 15,7

6

5 3(4,5) /t4

4l 'gw GH 04(4,4) edy: 7

ds, de(3,3);
3 — i
2404(0.2) edyat S~ —— 05(8,2) eds: 9
Te ~

140200, 1) edz:1 06(8,1) eds: 10
wa(8,0)

0 1 4 5 >

Fig. 3. A toy instance of our problem

r;, and initialize the node set N.S; as an empty set in line 5.
Then, we traverse each node NN in the previous level and try
to partition it with a smaller circle in lines 6-11. Finally, we
obtain all the nodes in HST and complete the construction.

Example 2 (An Example of HST). We use an example to
explain the construction procedure of HST. Suppose we have
6 tasks in a Euclidean space, as shown in Figure [5| And the
origins and destinations of these tasks form the point set V. Let
the permutation of points be m = {01,d1,092,ds,...,06,ds}
and [= 0.5, we calculate the diameter of the point set,
which is d(dy,06) = V98 ~ 9.90. Thus, the height of HST is
[logy Al = 4. The root node of HST contains all the points.
In level 3, the radius of the circular region is 23 - 0.5 = 4,
and we try to partition the root with the decreased circle.
We traverse the permutation T to choose the center point.
Firstly, we choose o1 as the center point and cluster it with
02. Secondly, we choose dy and cluster it with dy. Thirdly,
we choose oo and there is no new node constructed. When
we traverse to ds, although it has been included in another
node, it can still be a center point and form a new node
which contains 03,04,ds and d4. We repeat above process
until all points have been partitioned into new nodes of HST.
The processes in other levels are the same. The constructed
HST is shown in Figure

B. Flow Tree for Shared Mobility

After HST is constructed, the origins and destinations of
tasks are clustered into different nodes in HST. Each node
can be regarded as a circular region. Through adding directed
edges between nodes at the same level, we can clearly observe
how tasks flow from one region to another region. Based
on this observation, we build a new tree structure called
flow tree in accordance with the added edges. Each node
in the tree contains a group of tasks, whose origins and
destinations are within the same circular regions, respectively.
From Algorithm [I] we know that the granularity of clustering
of HST is finer and finer from top to bottom because the
radius of the circle is getting smaller and smaller. Flow
tree also preserves this property. Next, we will introduce the
construction procedure of the flow tree.

Algorithm 2: Flow Tree Construction Procedure

Input: A set of tasks 7', a HST T

Output: A flow tree 77

FNSy + {{T}}

for i < 7.H — 1 t0 0 do

map — {(<, >, {})}

foreach t; € T' do
idp < ID of the node containing p; in ith level
tdq < ID of the node containing d; in ¢th level
add t; to map with key < idy,idq >

P Y N2

e

foreach < id,,idq >€ map.keys do
9 L add all tasks with key < id,,idq > to TDS;

return {S; | w; € W}

—
=l

level 4

level 3

level 2

level 1

level 0

Fig. 4. HST constructed according to the origins and destinations of tasks in
the toy example

Algorithm [2| shows the construction procedure of the flow
tree. Nodes in the same level are disjoint and the union of them
includes all tasks in 7. From lines 2 to 12, we iteratively build
the tree in accordance with the information provided by HST.
In each level, we first initialize a map whose key is a pair of
node IDs in HST, and the value is a set of tasks in line 3.
Then we group the tasks together by their corresponding keys
in lines 4-8 and construct the nodes based on the grouped tasks
in lines 9-11.

Example 3 (An Example of Flow Tree). In Figure 4} each
red edge contains a number of tasks whose origins and
destinations are within the same nodes respectively in HST.
And we can build a flow tree as shown in Figure 5| according
to these edges. The root of the tree contains all tasks and
each leaf node contains only one task. Here we take level 3
for example to show the construction procedure. Suppose the
node ids in level 3 of HST are [1,2,3,4,5] from left to right.
Then the keys for t1 to tg are < 1,2 >, < 1,2 >, < 3,3 >
,< 3,3 >,<5,4>,< 5,4 >. By grouping the tasks by their
keys, we can obtain the final groups as {t1,t2}, {ts,t4} and
{ts, te}

C. Trend

In real world, we can observe that tasks will present a certain
trend. For example, in food delivery scenario, tasks often show
a tendency to scatter from the center to the periphery because
the trading area is relatively concentrated; in ridesharing
scenario, tasks often flow from suburb to downtown during the
morning peak and reverse during the evening peak. Certainly,

level 4

level 3

level 2

level 1

level 0

Fig. 5. Flow tree constructed according to the added edges of HST in Figure 4]

tasks with the same trend have high sharability, and we hope to
assign them to the same worker so that he/she can efficiently
deliver all of them, which can significantly reduce the detour
and possibility of tardiness, especially in the rush hour. Thus,
we propose a concept of trend, which is defined as follows.

Definition 7 (Trend). A trend is a group of tasks that can be
assigned to a single worker such that the form of the optimal
route to deliver them is first traversing all origins to pick up
the goods/passengers, then delivering them one by one.

Not all nodes in the flow tree can meet the requirement of
trend. For example, in Figure |3} ¢35 and ¢4 are in completely
opposite directions, but they are within the same node of the
flow tree in level 3 as shown in Figure E} Thus, we devise
a decision factor e-score to help us select the trend from the
flow tree. The formula to calculate it is shown in equation [I]

3mindinter

- = 1
erscore 2maxy +maxy M

inner inter

In equation dinter 18 the distance of an inter-edge that
connects an origin and a destination, d;nne, 1S the distance
of an inner-edge that connects origins or destinations. The
intuition behind this formula is that if replacing an inner-edge
with an inter-edge has no gain at all, we can conclude that the
optimal form of the route to deliver all tasks is first traversing
all pickup locations, then delivering them all in one shot. Next,
we propose a lemma to formally prove it.

Lemma IV.1. For each node in flow tree, if the corresponding
e-score > 1.0, it satisfies the requirement of a trend.

Proof. When a node contains a single task, d;pner = 0 and
min d;nter = Max djnte because there is only one origin and
one destination.Thus, its e-score is equal to 3.0. Obviously,
it satisfies the requirement of a trend. Otherwise, suppose the
number of tasks is n, then there will be 2n — 1 edges in the
route. Let Rpp denote the optimal route that traversing origins
first then destinations and Rorpr denote the optimal route
with other forms. Rpop is composed of 2n — 2 inner-edges
and 1 inter-edge, suppose Rorr replaces 2k inner-edges by
inter-edges, as a result, it is constitued by 2n — 2 — 2k inner-
edges and 1 + 2k inter-edges (1 < k < n). If mind;nter >
max d;nner, Obviously, substituting 2k inner-edges with 2k
inter-edges has no gain at all when the original inter-edge

Algorithm 3: Trend Based Task Assignment

Input: A set of tasks 7, a set of workers W
Output: A route .S; for each worker w; € W
1 build flow tree 77 according to T
2 sort t; € T by wj in descending order
3 foreach t; € T do

4 if t; has been assigned then

5 | continue

6 find worker w; with the minimal tardiness for ¢;

7 td <+ largest trend w; can accommodate in 77 that

contains ¢;
8 update route .S; for w; with algorithm
9 foreach t; € T' do

10 remove ¢’ from td
11 recursively remove ¢’ from ¢d’s children
12 recursively remove ¢ from td’s parent

return {S; | w; € W}

-
w

is preserved. Otherwise, assume the extreme condition that
original inter-edge is the longest, and it is replaced by the
shortest inter-edge, then the gain is max d;pter — Min djper-
The minimum loss of the other 2k substitutions is achieved
when k& = 1, namely, 2(min d;pter — Mmax dipner). Thus, when
max dinter — min dinteT - 2(m1n dim‘,er — max dinner) < 07
the travel time of Rop is less than that of Rorg. This is
equivalent to e-score > 1, which completes our proof. O

Example 4 (An Example of e-score). In Figure [5| the num-
ber to the right of the node is its e-score. Take the first

node in level 3 as an example, max dipter = d(p2,d1) =
V50, min dinter = d(ph d2) = V29, max dinner =
d(dqy,ds) = V2, thus, e-score = % ~ 1.36. Thus,

this node is a trend. This is also true for the last node in level
3 because its e-score is also > 1.0. However, the middle node
in level 3 is not a trend because its e-score is negative. We
can also validate these assertions from Figure |3| where tasks
within the same trend are marked by the same color.

V. TREND BASED TASK ASSIGNMENT
A. Basic Idea

The main reason for tardiness is the lack of workers. If
the origin of a task is located in an area with abundant
workers, there are many choices for it to be delivered on
time. In contrast, tasks in remote areas have fewer choices, and
they should be considered with higher priority. Based on this
intuition, we propose an indicator called k-regret to quantify
the likelihood of tardiness for each task and use it to determine

the order of tasks being selected.

Let zj;, indicate the worker for which task t; has the k’th
minimal tardiness, and ¢;; denote the tardiness of the task
t; when assigned to worker w;. Thus, we can calculate the
k-regret w; for task t; as follows:

k
wj; = Z 5'71‘]'1' — 5j71j1 (2)
=1

The k-regret of a task is the sum of the difference in the
tardiness of assigning it to its best worker and its k’th best

TABLE I
TARDINESS OF TASKS.

t1 (wg, 0.00) (wl, 2.29) (wz, 3.33)
to (wg, 0.57) (wl, 4.39) (wg7 4.39)
t3 (wl, 0.00) (w37 1.63) (wg, 5.71)
ta (wg, 0.00) (wl, 0‘16) (wg, 1.82)
ts (wg, 0.00) (w3, 1.48) (wl, 3‘31)
te (wg, 0.00) (w3, 1.22) (wl, 3.45)

worker. A task with larger k-regret means considering it later
will incur worse results.

Example 5 (An Example of k-regret). As shown in Figure 3]
there are three workers located in different areas. The
tardiness of tasks when assigned to different workers is
shown in table [l and each row is sorted by the tardiness in
ascending order. Suppose k = 3, then we can calculate the
k-regret of tasks and sort the results by descending order:
[(t2,7.64), (t3,7.34), (t1,5.62), (t5,4.79), (ts,4.67), (t4, 1.98)].
We can observe that to has the largest k-regret. The reason
is: for ts, ws is the nearest worker and can deliver it with
tardiness 0.57. If ws is not assigned to it, then there are just
two choices left for it, which will make to waiting for a long
time to be completed and significantly increase the tardiness.
Thus, we should consider to first and assign ws to it. We
can also observe that ty has the smallest k-regret because
there are many workers around its origin and all of them can
complete it with small tardiness. Thus, considering it at last
will not impact the result too much.

K-regret can help us capture the temporal features of tasks.
On the other hand, spatial features are also important for the
objective of minimum tardiness. We take the advantage of the
flow tree to find a trend that contains the selected task and
assign them as a whole to a specific worker such that the time
to deliver all of them will not exceed the time delivering any
single of them too much. Based on these considerations, we
propose a trend based task assignment.

B. Algorithm Detail

Algorithm [3] presents our task assignment algorithm. In
line 1, we first build a flow tree based on the tasks in the
current batch. In line 2, we sort the tasks by their k-regret in
descending order. Then in lines 3-7, we iterate each task ¢;,
if ¢; has not been assigned, we find the worker w; who can
deliver ¢; with minimal tardiness to serve it. Then, we start
from the leaf node that contains ¢;, go upward to find the
largest trend td that w; can accommodate in the flow tree in
line 8. In line 9, we invoke the route planning algorithm to
update w;’s existing route according to tasks in the trend td. In
lines 10-14, we remove the assigned tasks from the flow tree.
Next, we will use an example to illustrate our task assignment

procedure.
ds ds

Fig. 6. Construct a route by merging two cycles.

Algorithm 4: Trend Based Route Planning

Input: A set of tasks 7', one worker w; with route S;
Output: An updated route S; for worker w;

1 Go=(Vo,E),Vo={o0; |t; €T}, Eo =VoxV,
2 Gg= (Vd,Ed),Vd = {d]‘ | t; € T},Ed =VagxVy
3 cycle, < Christofides(Go)

4 cycleq < Christofides(Gq)

5 cost < INF, (So,to,Sd,ta) < (, , ,)

6 foreach edge e, € cycle, do

7 01,02 < end points of e,

8 foreach edge eq € cycleq do

9 di,d2 < end points of eq

10 mine, = min (d(o1,d1),d(o1,d2))

11 Mine, = min (d(o2,d1), d(02,d2))

12 if d(w, 01) + mine, > d(w, 02) + min,, then
13 A = d(w, 02) + mine, —wei(e,) — wei(eq)
14 if A < cost then

15 cost = A

16 if d(Ol, dl) < d(Ol7 dz) then

17 L (So,to,sd,td) — (027017d1,d2)

18 else

19 L (807t078d7td) — (027017d27d1)

20 else

21 A = d(w,01) + mine, —wei(e,) — wei(eq)
22 if A < cost then

23 cost = A

24 if d(027 d1) < d(OQ7 dg) then

25 | (s0,to,8a,ta) < (01,02,d1,d2)

26 else

27 L (So,to,sd,td) < (01702,d2,d1)

28 append {So,...,t0,8d,...,td} t0 S;
29 return S;

Example 6 (A Running Example of the Task Assignment
Procedure). Continue from the example in Figure |3} We first
build a flow tree as shown in Figure [5] Then, we sort the tasks
by their k-regret as shown in Example [3| We first select t,
and assign it to ws because ws can complete it with minimal
tardiness (see Table [[). Then, we find the largest trend that
contains ty in flow tree, which is the first node in level 3. After
that, we invoke the route planning algorithm to update existing
route of ws as [l3, 09,01, da,d1). The arrival time of di and
ds is 11.63 and 10.63 respectively. Thus, the tardinesses of t1
and to are both 0.63. Secondly, we will select t3 and assign it
to wy. We find that the largest trend in flow tree only contains
it, so wy’s route becomes [l1,03,ds] and the tardiness is 0.
Thirdly, we see t1 has been assigned with to, so we come to
the next one, which is ts. We assign ts to wo and find the
largest trend in flow tree, which contains ts and tg. So we
update the route of wy as [la, 06,05, ds, dg|. The arrival time
of ds/dg is 1+1+ V26 ~ 7.1. Thus, the tardinesses of ts and
tg are both 0. Finally, we will select t4. Note that all three
workers’ existing routes have been updated, so the worker
who can serve ty with minimal tardiness is not ws anymore.
Instead, wy will serve ty with minimal tardiness 1.32. Thus,
the total tardiness is about 2.58.

C. Complexity Analysis

Let H, m and n denote the height of flow tree, the number
of tasks and the number of workers respectively. We need
O(m?H) time to build a flow tree in line 1. Then, we need to
calculate the k-regrer for each task, which needs O(mn) time.
The time complexity of sorting in line 2 is O(mlogm). We
need O(n) time to find the best worker in line 7, O(H) time
to find the largest trend that contains the selected task in line
8 and O(H) time to remove the assigned tasks from the flow
tree in lines 10-14. Suppose the time complexity of the route
planning algorithm is O(K), then the time complexity in lines
3-15is O(m(n+ H + K)). Thus, the overall time complexity
is max (O(m?H),O(m(n+ H + K))). The space cost is
mainly from the construction of flow tree. Thus, the space
complexity is O(m?H).

VI. TREND BASED ROUTE PLANNING
A. Basic Idea

Since we adopt the strategy to append a newly planned route
to the existing route, the only question left is how to plan a
route for a trend. According to Definition [/ we know that the
optimal form of a trend’s route is first traversing all origins
to pick up the goods/passengers, then delivering them to the
destinations one by one. Based on this property, we can divide
the route planning process into two parts. In either part, we
need to plan a route that visits each location exactly once,
which is the same as the traditional Hamiltonian path problem.
Since the problem is NP-hard [S1] and the route planning
procedure is required to respond in real-time, we devise an
approximation algorithm to efficiently and effectively solve it.
Next, we will describe it in detail.

B. Algorithm Details

Algorithm [4| shows the pseudocode of our route planning
procedure. Firstly, we construct two complete graphs G, and
G4 according to the origins and destinations in lines 1-2. Then
we invoke Christofides algorithm [52]] to find Hamiltonian cy-
clesin G, and G in lines 3-4. After obtaining the Hamiltonian
cycles, we try to find the best way to link the worker, origins
and destinations together. As shown in Figure [6] by removing
two edges from the two cycles and adding two edges among
the three components, we can construct a complete route that
starts from the last location of the worker’s existing route and
ends in a destination. Specifically, in lines 5, we initialize a
variable cost to record current minimal increased travel time
and a quadruple (s,, to, S4,tq), Where s,,t, represents the first
and last locations of origins and sg4, t4 represents the first and
last locations of destinations. In lines 6-27, we enumerate
all possible combinations of the two edges which will be
removed from the cycles. For each combination, there are four
possible routes, which are shown in lines 17, 19, 25 and 27,
respectively. We choose the best one among the four possible
routes and compare it with the minimum cost we found so far
and update the quadruple accordingly. Finally, we are able to
construct the complete route by the quadruple and append it
to the worker’s existing route in line 28.

TABLE III
PARAMETER SETTINGS (NYC).
Parametersc Values
number of tasks |T| 200K, 250K, 300K, 350K, 424635
number of workers |W | 1000, 2000, 3000, 4000, 5000
batch size At (s) 5, 10, 15, 20, 25
edt ratio 1.5, 1.8, 2.0,23,25

C. Complexity Analysis

Let m denote the number of tasks in a trend. In lines 1-
2, we construct two complete graphs, which can be done in
O(m?) time and consumes O(m?) space. Then we invoke
Christofides algorithm which can find an approximate solution
in O(m?logm) time. In lines 6-27, there are two nested for
loops, and all the operations in the inner loop can be done
in O(1) time. Thus, the overall time complexity is O(m?).
In line 36, the final result can be constructed in O(m) time.
Finally, the time and space complexity of Algorithm [4| are
O(m?logm) and O(m?) respectively. Note that m is bounded
by the maximum capacity of workers, it usually will not
exceed 20 in real applications. As a result, the time and space
complexity of our algorithm is low enough to support real-time
response.

D. Approximation Analysis

Christofides algorithm guarantees finding a solution within
1.5 approximation ratio to the optimum [52]]. Benefitting from
it, we prove that our algorithm can plan a route with an
approximation ratio 2.5 to the optimum for the tasks in a trend
and the result is presented in Theorem

Theorem VL.1. Suppose OPT is the optimal route and ALG
is the route obtained by our algorithm. Let dopr and dapG
be the travel time of OPT and ALG respectively. Then we
have darc < 2.5 -dopr.

Proof. Suppose the route of OPT is [w, So, - - -, to, Sd, - - - » td)

and the route of ALG is [w,s),...,t,, s}, ... t,] Thus, the
travel time of OPT and ALG are
dopr = d(w, 30) + d(Soy ... to) + d(to, sa) + d(Sd, - -,ta) (3)
darc = d(w, sh) +d(sh, ... o) +d(ts, sy) +d(sy, ..., ty) @

We denote the optimal Hamiltonian cycles in origins and
destinations by T'SPg pp and T'SPS 1., and cycles found by
our algorithm are T'SP4; ~ and T'SP§; ~. Then we have

TSPS1q < 1.5-TSPSpr
TSPirc <1.5-TSPSpr
Since d(so, ..., to) +d(S0,t0) > T'SPSpr and d(s. cota)+
3

d(sa,ta) > TSP&pr, we put them into Equation [3| and can
obtain the following inequation

dopr > d(w, $0) + TSP pr — d(s0,1,)

+ d(tm Sd) + Tspng — d(8d7 td)
Since d(s,,,...,t,) +d(s,,t,) = TSP3.,¢ < 1.5-TSPSpp and
d(sl, ... th) +d(sy,th) = TSPY ;o < 1.5 - TSPSpr, we put

them into Equation 4| and can obtain the following inequation:
darc < d(w,s,) + 1.5-TSPSpyp — d(sb, th)

+d(th, s4) + 1.5 - TSPSpr — d(si, ta)

TABLE IV
PARAMETER SETTINGS (CAINIAO).

Parametersc Values
number of workers |W | 1000, 1500, 2000, 2500, 3000
batch size At (s) 5, 10, 15, 20, 25

We denote Ay = d(w, s,) — d(s,,t,) + d(t,, sy) — d(sy, ty) and
Aoy = d(w, So) — d(So,tO) —+ d(to, Sd) — d(sd,td). ThUS, dare <
A1 4+1.5-(TSPEpr +TSPEpr) and dopr > Ao+ (TSP pr +
TSP&pr). Then, we have

darc —dopr < A1 — Ay +0.5- (TSPSpr + TSP pr)
Next, we will prove that A; — Ay < TSP pr + TSPSpr:

A1 — Ar = d(w, s,) — d(w, 50) + d(s0,t0) — d(sh, t5,)
bt) — dlto,5a) + d(sa, ta) — d(sint))
According to triangle inequality, we have
d(w, s,) — d(w, s0) < d(sh, 80)
d(t,, s4) — d(to, sa) < d(th,to) + d(sy, s4)
We put them into Equation [5] and can obtain
A — Ay
< d(85,80) + d(s0,t0) + d(to, to) — d(s0, o)
+d(sy, 8q) + d(sa, ta) — d(sy, ty)
< TSPSpr +TSPSpr
Then, 94aLc _ darc —dopr 41
dopT dopr 4
1.5-(TSPS TSP,
STy TSPy 1
O

VII. EXPERIMENTAL STUDY

In this section, we will present the experimental settings
and results of our approaches. Specifically, we will introduce
the real datasets we used in Section [VI[-Al and illustrate the
compared algorithms and metrics in Section Then we
will analyze the experimental results of different algorithms in
Section and Section and summarize the results
in Section

A. Datasets

Real Datasets. We use two real datasets, i.e. NYC and
Cainiao. The NYC dataset [53] was collected from two types
of taxis (yellow and green) in New York City, USA, and has
been widely used as a benchmark in ridesharing studies [25]],
[27]. We select the day (April 09, 2016) with the largest
amount of trips and extract data from it. It provides us the ori-
gins and destinations of 424, 635 trips, but does not provide the
expected delivery time of them and the information of workers.
Thus, we randomly generate the workers’ initial locations and
set the speed and capacity of each worker as 11.11m/s (about
40km /h) and 4 respectively. We set the expected delivery time
ratio (edt ratio for short) p as a parameter in the experiment.
The expected delivery time is set as (1 + p) times the travel
time needed to complete the task. The Cainiao dataset was
collected by the largest delivery platform called Cainiao [8]]
in China, and was published by a publicly available last-
mile delivery dataset with millions of packages from industry

- GDP FESI e TS

~ 1011 c oo
a1 N 2.500 101 107 510

--------- LA 2 — 2
? 10 oo L S * £2.125 . § g e * 3 ~
210104 = @ 1010 %" 108 PO PO * © 106
< — 1.750 e + 3 O * £
T 2 B g =
<00 Z1.375 T 109 e FRL2 R ——— 105 %

---------- - + [EUUIRSPURRIRIEIY Ty s I <
T e — 10001 e ° . 2 £
) @ * =1
© 108 L b 108 104 =104
= 200000 250000 300000 350000 424635 ,E 200000 250000 300000 350000 424635 200000 250000 300000 350000 424635 200000 250000 300000 350000 424635 200000 250000 300000 350000 424635

IT| (Nnve) |T] (Nvo) |T| (Nve) IT| (Nvo) [T (nve)

(a) Total Tardiness (b) Total Travel Time

10115

N}
=3
S

(c) Total Latency

(d) Makespan (e) Running Time

3
3

108 101
*..

7 10104 =

=
S

50

K3

Total Latency
3

o5 %

...........

08 .00 108

2
2

2
2

Makespan (s)

.
*

Running Time (ms)

104 104

Total Tardiness (s)
‘
Total Travel Time (s)

1000 2000 3000 4000 5000
|W| (Nve)

1000
|W| (NYe)

(f) Total Tardiness (g) Total Travel Time

2000

(h) Total Latency

3000 4000
|W| (nvo)

5000 1000 2000 3000 4000

|W| (Nnvo)

5000 1000 2000 3000 4000

|W| (nvo)

5000

(i) Makespan (j) Running Time

Fig. 7. Results of NYC Dataset when Varying || and |W|.

called LaDe [54]]. It provides the daily information of tasks
and workers in the Cainiao platform during 2021 with all
information we needed. We select 147,350 actual delivery task
data in Shanghai, including the initial location distribution of
the workers. For both datasets, we vary the number of workers
|W| and the batch size At to simulate different situations in
reality. For NYC dataset, we also vary the number of tasks |77,
the edt ratio u to evaluate the performances. The parameter
settings of NYC and Cainiao datasets are listed in table
and table respectively. The default settings are marked in
bold.

B. Approaches and Measurements

We compare with the following algorithms in batch mode:

¢ GreedyDP [25] (GDP for short) is an insertion-based
algorithm. Specifically, for each task, it will greedily select
the worker with minimal increased travel time and inserts the
origin and destination of the task into the optimal position of
the worker’s existing route.

o FESI [26] uses a travel budget to bound the longest travel
time of workers. Initially, the travel budget is set to a small
constant (e.g., 1), then in each iteration, it is doubled and more
tasks can be assigned to workers. The algorithm terminates
when all tasks have been assigned. Under each travel budget,
it plans routes for the assigned tasks and append them to
the existing routes of workers. It leverages the spatial index
HST to do route planning and prove that the solution has an
approximation ratio O(logn) in terms of both makespan and
total latency. The implementation is open-source, but it only
considers task assignment and route planning in one batch. We
extend it to support multiple batches.

o TrendSharing (TS for short) is our method. Firstly, we
sort the tasks with their k-regret values, then iterate each
unassigned task, find the worker who can deliver it with
minimal tardiness. Then, we search the largest trend that
contains the task and the worker can accommodate from the
flow tree and assign tasks in the trend to the chosen worker.
After the assignment step, we plan a route for the tasks in the
trend and append it to the worker’s existing route.

The following five metrics are used to evaluate the perfor-
mances of the algorithms.

o Total Tardiness. The main objective of our work.

o Total Travel Time. The most common objective in
existing works.

o Total Latency. The sum of the difference between the
release time and completion time of all tasks. It includes the
queueing time of tasks in batches and the process time.

e Makespan. The maximal travel time of all workers.

o Running Time. The time needed to complete task as-
signments and route plannings for all batches.

We implement all the compared algorithms in Java 11.
All experiments are conducted on a server with two Intel(R)
Xeon(R) 4210R 2.40 GHz CPUs and 128 GB memory.

C. Results of NYC Dataset

Effect of |T|. The first row in Figure [7| shows the results
when varying the number of tasks |7'|. The results of the
algorithms increase as the number of tasks increases. In terms
of total tardiness, TS significantly outperforms the state-of-the-
art algorithms FESI and GDP by a factor about 7.2-10.2x and
43.9-65.6x, respectively. In terms of total travel time, GDP
performs the best, TS comes second and the ratio between
them is no more than 1.2. Although this is not the main
objective of TS, it is still up to 1.2x smaller than FESI. The
result of total latency for each algorithm is similar to that of
total tardiness. The reason is, for each task, latency refers to
the time interval between its completion time and its release
time, while tardiness refers to the time interval between its
completion time and its expected delivery time. Normally,
the expected delivery time is larger than the release time. As
a result, in the case when most tasks are tardy, these two
metrics become similar. And when the expected delivery time
is equal to the release time, total tardiness is equivalent to total
latency. In terms of makespan, which is one of the objectives of
FESI, TS still performs a bit better than FESI. GDP performs
the worst. The reason is it will continuously insert tasks to
the existing routes of workers. Workers in the area with a
large number of tasks will be selected with high probability,
while others in the area with few tasks may be in an idle
state for a long time until a task traveling from the sparse
area to the dense area appears. Consequently, the number of
workers actually available is much less than the total number
of workers, which will result in a worse makespan. In terms of

- GDP FESI o TS

@ 101 L2 00 ~ 101 107 ~ 107
= © 1 g
g e I P S 2o O dereess ereeesidensesietk . E
g 10 n: % 10 100 e e Ferreanann e * %
3 ol 2 g = 108
< 100 g = 100 IR LR RO S — 2

=1 10 e <] : £
R e e T _ ﬂ = £
5 108 2100 2 108 104 2 105
= 5 10 15 20 25 ,2 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

At (NYC) At (NYC) At (NYC) At (NYC) At (NYC)

(a) Total Tardiness (b) Total Travel Time

(c) Total Latency

(d) Makespan (e) Running Time

10 2.00 % 10

*-
1010 L7 1010
1.50

10°

3

1.25

...

108

Total Tardiness (s)
Total Latency (s)

=)
>

1.00

..

107

g

3
*
:
H

108

2

Makespan (s)

Running Time (ms)

Q
2

Total Travel Time (s)

U (NYO)

(f) Total Tardiness (g) Total Travel Time

1.5 1.8 2.0 2.3 2.5 1.5 18

(h) Total Latency

20 23 25 15 18 20 23 25 15 18 200 23 25
u (NYC) 1 (NYC)

(i) Makespan (j) Running Time

Fig. 8. Results of NYC Dataset when Varying At and p.

running time, GDP performs the best and TS comes second.
Although FESI needs a relatively long time to terminate, its
response time will not exceed the batch period.

Effect of |IW|. The second row in Figure [7| shows the results
when varying the number of workers |W|. With the increasing
number of workers, the results of all algorithms decrease
except the running time. In terms of total tardiness, TS has
a significant decrease when the number of workers increases
from 1000 to 3000. The reason is when |W| = 1000, the
number of workers is too small to meet actual demand.
When |W| increases to 3000, the relation between supply
and demand is much more balanced and tardiness reduced
by increasing workers is getting less and less. In terms of
total travel time, we can see that it is not greatly affected by
the number of workers. The reason is, the number of tasks is
large and the empty run time of workers is negligible compared
with the time needed to deliver tasks. In terms of total latency,
we can observe that the gap between total tardiness and total
latency of TS is clear, which means the proportion of tardiness
in latency is relatively small. In terms of makespan, the results
of TS and FESI are the best and they are close to each other.
In terms of running time, the results of all three algorithms
increase as the number of workers increases because the time
complexities of all of them are affected by |W]|.

Effect of At. The first row in Figure [§] shows the results
when varying the batch size At. We can observe that it has
little impact of total tardiness and total latency. In terms of
total travel time, the results of all three algorithms decrease.
This is in line with expectations because despite the longer
queuing time increasing the latency and indirectly affecting
the tardiness, more tasks in a batch will lead to a better
assignment. In terms of makespan, the performance of TS and
FESI is stable, but the result of GDP has a little fluctuation.
The running time of FESI is significantly reduced as the batch
size increases because the number of tasks in each batch
increases leading to a lower total cost of building HST.
Effect of ;. The second row in Figure [§] shows the results
when varying the edt ratio u. This parameter has little effect
on the results of all three algorithms in terms of total travel
time, total latency and makespan. For FESI and GDP, they
do not consider the expected delivery time at all, so their
performances will not be affected as well. For TS, this

parameter will not influence the likelihood of tardiness for
tasks. Thus, its result will not be affected. The total tardinesses
of all three algorithms decrease with the increase of u, and the
reduction of TS is more obvious than the other two algorithms.

D. Results of Cainiao Dataset

Effect of [W|. The first row in Figure [9] shows the results
when varying the number of workers |W|. In terms of total
tardiness, the results of all algorithms decrease as the number
of workers increases. TS is about 1.25-4.68x and 2.84-39.31x
smaller than FESI and GDP, respectively. In terms of total
travel time, GDP performs best, and TS is the runner up, the
ratio between GDP and TS is no more than 1.17. Although this
is not the main objective of TS, it is still up to 1.1x smaller
than FESI. In terms of total latency, since the number of tardy
tasks is less, the trend is no longer completely consistent
with the result of total latency. The gap between TS and
other algorithms is significantly reduced, TS is about 1.24x-
2.5x and 2.76-16.95x smaller than FESI and GDP, which
is a minor improvement compared with the result of total
tardiness. This is a validation that algorithms that perform

well on the objective of minimizing total latency may not
perform well on the objective of minimizing total latency,
although they look similar. In terms of makespan, the results
of TS and FESI are close to each other, FESI shows a slight
advantage here due to its use of travel budget. The result
of GDP reduces significantly with the increasing number of
workers. The reason is more workers appear in the area with
a large number of tasks, so they can alleviate the burden of
the overwhelmed workers. In terms of running time, GDP is
the best since it is a greedy algorithm thus relatively faster.
TS comes second and FESI is in the 3rd place, but are still
adequate to respond promptly to users in real-world scenarios.
Effect of At. The second row in Figure [0 shows the result
when varying batch size At. In terms of total tardiness,
total latency and running time, the performance of the three
algorithms appears to remain relatively stable. In terms of total
travel time, the results of all three algorithms show a consider-
able downward trend as the batch size increases. TS gradually
increased the gap with FESI in larger batches, demonstrating
that our algorithm can effectively facilitate task sharing while
ensuring minimal tardiness. GDP is committed to minimizing

-
)

©
-
)

~
n

o

.............

IS
0

Total Latency (s)

Total Tardiness (s)
Total Travel Time (s)

w

w
-
S,

=
)

........
...............

o
2

Running Time (ms)

o
3

3
1000 1500 2000 2500 3000
|W] (Cainiao)

1000 1500 2000 2500 3000
|W| (Cainiao)

1000 1500 2000 2500 3000 TS 10 15 20 25
|W| (Cainiao)

1000 1500 2000 2500 3000

|W| (Cainiao) |W| (Cainiao)

(a) Total Tardiness (b) Total Travel Time (c) Total Latency (d) Makespan (e) Running Time
1010, g 10t 53 1w
“ 2 w PR - - g
c o e _ E
ﬁ 10° .E 75 o= T 100 * £27 * @ 100
2 EoR < 5 e g * £
5 T 6 L D 821 e E
JCRRTS g Zoage| e g Tk 2100
L E s = S1s £
'§ g S 1 E T gy E
107 Lol 107 0.9 10
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
At (Cainiao) At (Cainiao) At (Cainiao) At (Cainiao) At (Cainiao)

(f) Total Tardiness (g) Total Travel Time

(h) Total Latency

(i) Makespan (j) Running Time

Fig. 9. Results of Cainiao Dataset when Varying |W| and At.

total travel time, which may lead to an uneven distribution
among workers, and then fluctuations in the makespan.

E. Summary

TS v.s. GDP. TS outperforms the insertion-based algorithm
GDP about 59.5x on NYC dataset and 39.3x on Cainiao
dataset averagely in terms of total tardiness. And for the other
metrics except for the total travel time and running time,
TS significantly outperforms GDP. For the three algorithms
that can respond in real-time, GDP possesses the absolute
advantage over other algorithms for the total travel time
metric because of the power of insertion operation. However,
insertion may lead to the starvation of workers away from
hotspots because the detour of a nearby worker may be much
smaller than that of a far-away worker. Thus, workers in the
suburb may stay idle for a long time. What’s more, it will
postpone the completion time of the tasks assigned before.
These are the two reasons why its performance is poor for the
other metrics. At the same time, it may cause the problem of
uneven distribution among workers.

TS v.s. FESI. TS outperforms the state-of-the-art algorithm
FESI about 9x on NYC dataset and 4.7x on Cainiao dataset
averagely in terms of total tardiness. In terms of total latency,
which is one of the two objectives of FESI, TS still performs
better than FESI. In terms of makespan, which is the other
objective of FESI, the performance of TS is close to that of
FESI. Although FESI can bound the longest total travel time
of workers by the travel budget, when the budget is small, the
gap between the shortest route and longest route can be bound
by a small interval. However, when the budget becomes large
(e.g., 2'6 = 65536), the interval is large and cannot guarantee
that tasks are assigned evenly to workers.

VIII. CONCLUSION

In this paper, we consider tardiness as the optimization
objective and propose the minimum tardiness task assignment
and route planning problem. To solve this problem, we propose
a unified framework termed TrendSharing, which can mine
the spatial characteristics of tasks and capture the temporal
characteristics to well guide the task assignment and route
planning procedure. Specifically, we propose a novel structure
called flow tree to group tasks together according to their

spatial features. To find a set of tasks with high sharability, we
propose a concept of trend and use a decision factor e-score to
discover trend from the flow tree. In the task assignment step,
we devise an indicator k-regret to quantify the likelihood of
tardiness for each task and determine the order of tasks being
selected. Then, we take the advantage of the trend and design
an effective greedy algorithm to conduct task assignment.
In the route planning step, we adopt a simple yet effective
strategy to continuously append newly planned routes to the
workers’ existing routes. Moreover, we propose an algorithm
to plan a route for the tasks in a trend with an approximation
ratio 2.5 to the optimum. The experiment results validate that
our methods can achieve a huge enhancement on the objective
of minimizing total tardiness, and also perform well on other
common optimization objectives.

IX. ACKNOWLEDGMENT

Peng Cheng’s work is supported by the National Natural
Science Foundation of China under Grant No. 62102149.
Libin Zheng is supported by the National Natural Sci-
ence Foundation of China No. 62102463 and the Natural
Science Foundation of Guangdong Province of China No.
2022A1515011135. Lei Chen’s work is partially supported by
National Key Research and Development Program of China
Grant No. 2023YFF0725100, National Science Foundation
of China (NSFC) under Grant No. U22B2060, the Hong
Kong RGC GRF Project 16213620, RIF Project R6020-19,
AOE Project AoE/E-603/18, Theme-based project TRS T41-
603/20R, CRF Project C2004-21G, Hong Kong ITC ITF
grants MHX/078/21 and PRP/004/22FX, Microsoft Research
Asia Collaborative Research Grant and HKUST-Webank joint
research lab grants. Chen Jason Zhang is partially supported by
PolyU (UGC) P0045695, ITE-ITSP P0043294, ITS/028/22FP,
ITF PRP/009/22FX, PolyU-MinshangCT Generative Al Labo-
ratory Fund No. P0046453, Research Matching Grant Scheme
Funds No. P0048191 and No. P0048183, PolyU Start-up
Fund No. P0046703. Xuemin Lin is supported by NSFC
U2241211, NSFC U20B2046, and 23H020101910. Wenjie
Zhang is supported by ARC DP230101445 and FT210100303.
Corresponding author: Peng Cheng.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

“Uber.” https://www.uber.com/.

“Didi.” https://www.didiglobal.com/,

“Lyft.” https://www.lyft.com/,

“Grubhub.” https://www.grubhub.com/,

“Meituan.” https://www.meituan.com/.

“Eleme.” |https://www.ele.me/.

“UPS.” https://www.ups.com/.

“Cainiao.” https://www.cainiao.com/.

L. Kazemi and C. Shahabi, “Geocrowd: enabling query answering
with spatial crowdsourcing,” in Proceedings of the 20th international
conference on advances in geographic information systems, pp. 189—
198, 2012.

L. Kazemi, C. Shahabi, and L. Chen, “Geotrucrowd: trustworthy query
answering with spatial crowdsourcing,” in Proceedings of the 21st
acm sigspatial international conference on advances in geographic
information systems, pp. 314-323, 2013.

H. To, C. Shahabi, and L. Kazemi, “A server-assigned spatial crowd-
sourcing framework,” ACM Transactions on Spatial Algorithms and
Systems (TSAS), vol. 1, no. 1, pp. 1-28, 2015.

D. Deng, C. Shahabi, and L. Zhu, “Task matching and scheduling
for multiple workers in spatial crowdsourcing,” in Proceedings of the
23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 1-10, 2015.

M. Asghari, D. Deng, C. Shahabi, U. Demiryurek, and Y. Li, “Price-
aware real-time ride-sharing at scale: an auction-based approach,” in
Proceedings of the 24th ACM SIGSPATIAL international conference on
advances in geographic information systems, pp. 1-10, 2016.

M. Asghari and C. Shahabi, “An on-line truthful and individually
rational pricing mechanism for ride-sharing,” in Proceedings of the 25th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 1-10, 2017.

L. Zheng, L. Chen, and J. Ye, “Order dispatch in price-aware rideshar-
ing,” Proceedings of the VLDB Endowment, vol. 11, no. 8, pp. 853-865,
2018.

Y. Zeng, Y. Tong, Y. Song, and L. Chen, “The simpler the better: an
indexing approach for shared-route planning queries,” Proceedings of
the VLDB Endowment, vol. 13, no. 13, pp. 3517-3530, 2020.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

H. To, L. Fan, L. Tran, and C. Shahabi, “Real-time task assignment
in hyperlocal spatial crowdsourcing under budget constraints,” in 20/6
IEEE International Conference on Pervasive Computing and Communi-
cations (PerCom), pp. 1-8, IEEE, 2016.

P. Cheng, X. Lian, L. Chen, and C. Shahabi, “Prediction-based task
assignment in spatial crowdsourcing,” in Data Engineering (ICDE),
2017 IEEE 33rd International Conference on, pp. 997-1008, IEEE,
2017.

J.-J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. Wilson, “A heuristic
algorithm for the multi-vehicle advance request dial-a-ride problem
with time windows,” Transportation Research Part B: Methodological,
vol. 20, no. 3, pp. 243-257, 1986.

S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in 2013 IEEE 29th International Conference on
Data Engineering (ICDE), pp. 410421, IEEE, 2013.

S. Ma, Y. Zheng, and O. Wolfson, “Real-time city-scale taxi rideshar-
ing,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,
no. 7, pp. 1782-1795, 2014.

Y. Huang, F. Bastani, R. Jin, and X. S. Wang, “Large scale real-time
ridesharing with service guarantee on road networks,” Proceedings of
the VLDB Endowment, vol. 7, no. 14, 2014.

R. S. Thangaraj, K. Mukherjee, G. Raravi, A. Metrewar, N. Annamaneni,
and K. Chattopadhyay, “Xhare-a-ride: A search optimized dynamic ride
sharing system with approximation guarantee,” in 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pp. 1117-1128,
IEEE, 2017.

Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” Proceedings of the
VLDB Endowment, vol. 11, no. 11, p. 1633, 2018.

Y. Zeng, Y. Tong, and L. Chen, “Last-mile delivery made practical:
An efficient route planning framework with theoretical guarantees,”
Proceedings of the VLDB Endowment, vol. 13, no. 3, pp. 320-333, 2019.

(27]

(28]

[29]

(30]

[31]

(32]

[33]

(34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

J. Wang, P. Cheng, L. Zheng, C. Feng, L. Chen, X. Lin, and Z. Wang,
“Demand-aware route planning for shared mobility services,” Proceed-
ings of the VLDB Endowment, vol. 13, no. 7, pp. 979-991, 2020.

G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80-91, 1959.

G. Laporte, “The vehicle routing problem: An overview of exact and
approximate algorithms,” European journal of operational research,
vol. 59, no. 3, pp. 345-358, 1992.

B. L. Golden, S. Raghavan, E. A. Wasil, et al., The vehicle routing
problem: latest advances and new challenges, vol. 43. Springer, 2008.
G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte, “Static
pickup and delivery problems: a classification scheme and survey,” Top,
vol. 15, no. 1, pp. 1-31, 2007.

G. Berbeglia, J.-F. Cordeau, and G. Laporte, “Dynamic pickup and
delivery problems,” European journal of operational research, vol. 202,
no. 1, pp. 8-15, 2010.

J.-F. Cordeau and G. Laporte, “The dial-a-ride problem: models and
algorithms,” Annals of operations research, vol. 153, no. 1, pp. 29-46,
2007.

A. Colomi and G. Righini, “Modeling and optimizing dynamic dial-
a-ride problems,” International transactions in operational research,
vol. 8, no. 2, pp. 155-166, 2001.

J.-F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride problem,”
Operations Research, vol. 54, no. 3, pp. 573-586, 2006.

P. Shaw, “A new local search algorithm providing high quality solutions
to vehicle routing problems,” APES Group, Dept of Computer Science,
University of Strathclyde, Glasgow, Scotland, UK, vol. 46, 1997.

S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation science, vol. 40, no. 4, pp. 455-472, 2006.

D. Pisinger and S. Ropke, “Large neighborhood search,” in Handbook
of metaheuristics, pp. 99—-127, Springer, 2019.

J.-F. Cordeau and G. Laporte, “A tabu search heuristic for the static
multi-vehicle dial-a-ride problem,” Transportation Research Part B:
Methodological, vol. 37, no. 6, pp. 579-594, 2003.

H. Yuan and G. Li, “A survey of traffic prediction: from spatio-temporal
data to intelligent transportation,” Data Science and Engineering, vol. 6,
no. 1, pp. 63-85, 2021.

H. Emmons, “One-machine sequencing to minimize certain functions of
job tardiness,” Operations Research, vol. 17, no. 4, pp. 701-715, 1969.
E. L. Lawler, “A “pseudopolynomial” algorithm for sequencing jobs to
minimize total tardiness,” in Annals of discrete Mathematics, vol. 1,
pp. 331-342, Elsevier, 1977.

C. Koulamas, “The total tardiness problem: review and extensions,”
Operations research, vol. 42, no. 6, pp. 1025-1041, 1994.

C. Koulamas, “The single-machine total tardiness scheduling problem:
Review and extensions,” European journal of operational research,
vol. 202, no. 1, pp. 1-7, 2010.

Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowd-
sourcing: a survey,” The VLDB Journal, vol. 29, no. 1, pp. 217-250,
2020.

S. O. Krumke, “Online optimization: Competitive analysis and beyond,”
2002.

Y. Bartal, “Probabilistic approximation of metric spaces and its algorith-
mic applications,” in Proceedings of 37th Conference on Foundations of
Computer Science, pp. 184-193, IEEE, 1996.

J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approx-
imating arbitrary metrics by tree metrics,” Journal of Computer and
System Sciences, vol. 69, no. 3, pp. 485497, 2004.

A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, and T. Wagner,
“Scalable fair clustering,” in International Conference on Machine
Learning, pp. 405-413, PMLR, 2019.

B. Behsaz, Z. Friggstad, M. R. Salavatipour, and R. Sivakumar, “Approx-
imation algorithms for min-sum k-clustering and balanced k-median,”
Algorithmica, vol. 81, no. 3, pp. 1006-1030, 2019.

M. R. Garey and D. S. Johnson, Computers and intractability, vol. 174.
freeman San Francisco, 1979.

N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” tech. rep., Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976.

“NYC dataset.” https://www 1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page.

“Cainiao dataset.” https://huggingface.co/datasets/Cainiao- Al/LaDe-D,

https://www.uber.com/
https://www.didiglobal.com/
https://www.lyft.com/
https://www.grubhub.com/
https://www.meituan.com/
https://www.ele.me/
https://www.ups.com/
https://www.cainiao.com/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://huggingface.co/datasets/Cainiao-AI/LaDe-D

