Wait to be Faster: a Smart Pooling Framework for
Dynamic Ridesharing

Xiaoyao Zhong *, Jiabao Jin *, Peng Cheng *, Wangze Ni ©, Libin Zheng ', Lei Chen ¢, Xuemin Lin *
*East China Normal University, Shanghai, China
CHKUST(GZ) and HKUST, Guangzhou and Hong Kong SAR, China
tSun Yat-sen University, Guangzhou, China
tShanghai Jiaotong University, Shanghai, China
{xiaoyao.zhong, jiabaojin} @stu.ecnu.edu.cn; pcheng@sei.ecnu.edu.cn; wniab@cse.ust.hk;
zhenglb6 @mail.sysu.edu.cn; leichen@cse.ust.hk; xuemin.lin@ gmail.com

Abstract—Ridesharing services, such as Uber or Didi, have
attracted considerable attention in recent years due to their
positive impact on environmental protection and the economy.
Existing studies require quick responses to orders, which lack
the flexibility to accommodate longer wait times for better
grouping opportunities. In this paper, we address a NP-hard
ridesharing problem, called Minimal Extra Time RideSharing
(METRS), which balances waiting time and group quality (i.e.,
detour time) to improve riders’ satisfaction. To tackle this
problem, we propose a novel approach called WATTER (WAit
To be fasTER), which leverages an order pooling management
algorithm allowing orders to wait until they can be matched with
suitable groups. The key challenge is to customize the extra time
threshold for each order by reducing the original optimization
objective into a convex function of threshold, thus offering a
theoretical guarantee to be optimized efficiently. We model the
dispatch process using a Markov Decision Process (MDP) with a
carefully designed value function to learn the threshold. Through
extensive experiments on three real datasets, we demonstrate the
efficiency and effectiveness of our proposed approaches.

I. INTRODUCTION

With the increasing popularity of the sharing economy,
more and more ridesharing platforms are emerging to facilitate
people’s lives, such as Uber and Didi. The ridesharing service
is to group riders with overlapping travel routes and similar
time schedules, and then assign them to workers to serve. It not
only lowers prices for riders and saves fuel consumption for
workers, but also eases traffic congestion and reduces carbon
dioxide emissions.

In ridesharing, the platform may have different optimization
goals: (1) maximizing platform revenue [1], [2], [3]; (2)
minimizing the total travel distance of workers [4], [5], [6]; (3)
maximizing the number of served orders [7], [2]. To achieve
a high service rate, orders will be dispatched even if they
result in worse satisfaction, and will only be rejected when
they cannot be served in the extreme cases.

In dynamic ridesharing, existing studies propose two pro-
cessing modes: online-based mode and batch-based mode.
Online-based methods [8], [9], [10] provide a real-time re-
sponse to each order. Batch-based methods [11], [12], [2]
usually group the orders within a batch (i.e., a time window of
5 seconds) based on specific combination strategy and assign
the groups to workers. We observe from real datasets that

Fig. 1: An example of road network.

TABLE I: Online arriving orders.

Order Release Batch Pick-up Drop-off
Time (s) round Location Location

o? £ D /10 15 1)

o™ 5 0 a c

0@ 8 0 d f

o® 10 0 d c

o™ 12 1 e f

orders can wait for a while (e.g., 10 seconds) to get a better
grouping result with less travel costs. We illustrate this with
the following example:

Example 1. We assume that there are 2 idle workers
w® ~ w® and 4 orders oY) ~ o arrive at the platform
in ascending order of t\. The optimization objective is to
minimize the total travel time of the workers. The road network
consists of 6 nodes and 7 edges. Each edge represents a road
with a travel time of I minute. The information of orders is
shown in the Table I. (1) For the non-sharing method, the
2 available workers can only serve orders sequentially. The
trajectory of w) is (d, f,e, f) and that of w® is (a,c,d, c).
This method result in a total travel time of 4+8 = 12 minutes.
(2) For the online-based method, the platform will insert the
locations into workers’ routes greedily. The trajectory of w*)
is (d,e, f,d,c) and that of w® is (a,c). This method results
in a total travel time of 7T+ 2 = 9 minutes. (3) For the batch-
based method, let the batch size be 10 seconds. For instance,
orders oY) ~ 0®) are in batch round 0, and order o® is
in another batch round 1. As a result, oM and o®) will be
grouped together. Because 0'®) and o™ are not in the same
batch, they will be served sequentially. This method results in a
total travel time of 4+ 3 = 7 minutes. However, the best match
for o) is actually o®), and the best match for o is o).

Hence, resulting in a total travel time of 2 + 3 = 5 minutes.
Compared to the previous three methods, this pooling-then-
grouping strategy only causes the orders to wait slightly longer
but greatly reduces the total travel time.

Challenge: Unlike existing studies that only respond orders
immediately or in a static mini-batch time, is it possible to
allow orders to wait for a period of time to take advantage of
better grouping opportunities, which would ultimately result
in shorter total travel times? Intuitively, the longer an order
waits and the more other orders arrive, the higher probability
of it being grouped with more suitable orders, which leads to
that its total travel cost/time can be reduced. As it is difficult to
directly predict the arriving orders in the next several seconds,
the main challenge is to determine the optimal waiting/pooling
time before dispatching the order.

To address the challenge, we formalize a new problem
Minimal Extra Time Ride Sharing (METRS), which takes the
waiting times and detour times into consideration.

We propose a novel framework called WATTER (WAit To
be fasTER), which leverages an order pooling management
algorithm to maintain the orders and the shareability rela-
tionships in the temporal shareability graph. We propose an
effective average extra time threshold-based grouping strategy
that assigns a threshold of expected extra time to each order.
We theoretically prove that the optimization objective of
METRS problem can be reduced to a convex function of
extra time threshold, providing a theoretical guarantee for op-
timization effectiveness. We take spatio-temporal environment
into consideration, then model the decision-making process of
holding or dispatching orders in the pool as a Markov Decision
Process (MDP). Historical data is used to offline generate
training experience by simulating the dispatch process of the
framework incorporated with the proposed grouping strategy.
We utilize this experience to train the value function in MDP,
which is then used as an estimation of the expected extra
time in the online decision-making process. To summarize,
we make the following contributions in the paper:

o We formulate the METRS problem to balance waiting
response time and detour time and prove its hardness in
Section II.

« We introduce the order pooling management algorithm and
related algorithms in Section III.

« We devise an average extra time threshold-based grouping
strategy with theoretical analysis in Section V.

« We model the dispatch process and establish an offline
reinforcement learning model combined with the online
threshold-based strategy to make decisions in Section VI.

« Extensive experiments on real datasets is conducted in
Section VIIL.

II. PROBLEM DEFINITION

A. Preliminaries

Definition 1. (Order) An order is denoted by ol =
(l,(,l),lgl),c(i),_t(i),T(i),n(i)>. The order o(?) is released at
timestamp ¢() and contains ¢(*) riders. The order asks to

TABLE II: Symbols and Descriptions.

Symbol | Description
0@ an order sent by rider

o the set of all orders

g a group of orders

t(® the release time of order o(*)

tff’) the response time of order o)

ty) the detour time of order o(?)

t(ei) the extra time of order o(?)

7(® the drop-off deadline of order o™

p(i) the reject penalty of order o®

l;i) the pick-up location of order o™

lfj) the drop-off location of order o

L a route of ordered sequence of locations
cost(li,1;) the the shortest travel cost of two locations I; and I
T(L) the total travel cost of the route L

w a worker

k) the vehicle capacity of the worker w)

deliver riders from the pick-up location l},’) to the drop-off
location l((;) before the deadline 7(). The platform needs to
give response to order within waiting time limit (%),

An order group is a collection of orders that can be
represented as g = {0, 0, ... 0(9D}, where |g| denotes
the number of orders in the group. Note that the waiting
time limit 7(*) is a customized parameter just to indicate the
preferred limit waiting time of 0o(*), which is not a constraint.
In our paper, if 0() has waited more than 7(*) time, it should
be dispatched immediately when there is a suitable group,
Otherwise, it will be rejected.

Definition 2. (Worker) A worker can be denoted by wl) =
(1)) kW) a0y, where 1U) is the worker’s current location,
kU is the vehicle capacity, and a¥) is worker’s availability.

The availability a/) can either be idle (e.g., waiting for an
assignment) or busy (e.g., delivering an order group). In this
paper, we assume that a worker can only deliver one order
group at a time.

Let G denote the set of order groups that worker w®)
served in a day. Then, the set G = Uw(j>€WG(j) is composed
of all served order groups. Given the set O of all orders, let
ot = UgecUoingg 0" C O be the successfully served orders
in G. Let O~ = O — O denote the set of all rejected orders.

Definition 3. (Route) The route is an ordered sequence of
locations denoted by L = (l1,l2,...,[|z), where each [;
represents a location on the road network.

An order group g can generate a route L by aligning a
sequence that includes the pick-up and drop-off locations of
all orders in g. Then, the assigned worker w®) travels to
location [; and follows the route to serve the orders in the
group. We use L@ to denote the sub-route starting from [y,
passing through l,(f), and ending at l((;). The travel cost of
the route can be calculated as T(L) = ‘kLz‘fl cost(lg, lg+1),
where cost is the shortest travel time of two locations.

Definition 4. (Response Time) For a given order 0, let tgf)
denote the time when the platform notifies the grouping result,
then the response time of o(?) is 0 — ¢ _ () which refers
to the waiting time from the order being released to being
notified with assignment.

In practice, riders have limited patience for waiting. Long

response times may cause riders to cancel their orders, re-
sulting in potential revenue loss for the platform. However,
minimizing response time alone may lead to missing the
potential future properer riders and results in long detours,
which also can sacrifice the satisfactions of riders and drive
them to choose other transportation methods or platforms.
Thus, it is important to smartly balance the response times
and detours without clearly knowing future orders.

Definition 5. (Detour Time) For a given order o™ in order
group g, let L be the generated route for g, the detour time
t((;’) of 0¥ is denoted by t((;’) = T(LW) — cost(l,(,’),lg)),
which refers to the additional time cost incurred by sharing
the route with other riders compared to the minimal shortest

time cost(l(z) Z(Z))

Both response time and detour time can be considered as
the extra cost of riders in taking the ridesharing service, which
is the major factor to affect the riders’ satisfaction. In this
paper, we define extra time as a unified metric to reflect riders’
satisfaction.

t(" of order o) € g

Definition 6. (Extra Time) The extra time
is defined as:

i) = atl) +) (1)

where o and /3 are coefficients used for trade-off between the
detour time t((;) and the response time £,

We offer the flexibility to adjust the weight in definition.
By setting o =1 and 5 =1, tg’) represent the real extra time
of the rider, compared to the shortest travel time of the order.

B. Problem Definition

We defined the Minimal Extra Time RideSharing problem:
Definition 7. (METRS Problem) Given an online order set O
and a worker set W, the METRS problem is to find a set of
shareable order groups G for each order o(*) € O and assign

each group of orders with a suitable worker, such that total
extra time of orders in the platform ®(W,O) is minimized:

= > 0+ > P @)

o eo+ oW eo~

m1n<I> W, 0)

where pU) indicates the penalty of o\) if it is rejected. An
order group g is shareable if and only if it can generate a
feasible route L with a available worker w'/) satisfying the
following constraints:
1) Sequential constraint: Vo) e g, it has l,(f) =1, € L and
l(l) =1, € L, then z < y must be satisfied.
2) Deadline constraint: Yo(®) & g, then t() +)+ T(L®)
< 7() must be satisfied.
3) Capacity constraint: at any time, the number of riders in
the vehicle cannot exceed its capacity.

The penalty in the objective function 2 indicates dissatis-
faction after the rider has waited for a long time but not been
served. Note that riders in order o(") can wait for a maximum

response time max t.) = 7(1) () _ cost(l(2 lfi)) since if the

response time is longer than max tg-i) its deadline constraint
must be violated. In order to keep consistency with served
orders, we set the penalty as the maximum response time

p() = max t?)

C. Hardness

We prove that the METRS problem is NP-hard by a reduc-
tion from the Shared-Route Planning Query (SRPQ) problem
[2], which has been proved as an existing NP-hard problem.

Theorem IL.1. (hardness of the METRS problem) The METRS
problem defined in Definition 7 is NP-hard.

Proof. We prove the theorem by a reduction from the SRPQ
problem defined in [2], which has been proved to be an NP-
hard problem. The goal of SRPQ problem is to find, for each
worker w € W, a route S, such that the total revenue of
the platform OBJ(W,0) = >~ cw >_,cg, Pr is maximized,
where p,. is the fare/payment of each order. We can rewrite
the objective function of SRPQ as below:

Pr = max Z Pr — Z Dr

oM eo oM eo—

max OBJ(W, O) = max Z
o) cot
Due to)) co Pr is @ constant, we can reduce the objective
function SRPQ problem into: min) .o Pr
Then, by setting the coefficient « = 5 = 0 in ., and
setting pU) = p,., we show that the reduced SRPQ problem
is equivalent to the METRS problem. That is, for a given
SRPQ problem, we can reduce it into an instance of METRS
problem. The SRPQ problem can be solved in polynomial time
if and only if the METRS problem can be solved in polynomial
time. Since the SRPQ problem has been proved to be NP-hard,
METRS problem is also NP-hard. O

III. OVERVIEW OF WATTER FRAMEWORK

We first introduce the three major parts of our WATTER
framework: the order pooling management algorithm, the
average extra time threshold-based grouping strategy and the
estimation of value function for MDP reinforcement learn-
ing [13], [14], [15] stage, as shown in Figure 2. During
the online phase, we utilize a temporal shareability graph
to dynamically manage temporal shareability relationships of
orders. We conducted a theoretical analysis of the METRS
problem to derive an average extra time threshold-based group-
ing strategy that utilizes the average extra time of each order
and the customized threshold to make decisions. In the offline
phase, we employ an MDP approach to estimate the value
function, which is used as the threshold in the online decision-
making process.

(a) The Graph-based Order Pooling Management. Both online
and batch approaches have the disadvantage of dispatching
orders too quickly. Consequently, the matching pool is re-
stricted to the currently available orders, ignoring possible
future opportunities. To tackle these issues, we propose an
order pooling management algorithm based on the temporal
shareability graph that serves as a data structure to maintain
a dynamic set of orders: each order is represented as a node,

Online Grouping, Deciding and Dispatching

’

Threshold-based
rouping Strategy
7

(a) Graph-based
Order Pooling

I
1
I
I
\

o)

ey W) x ® ’ Offline Learning
o"or W 0 — |I ° Network)
. Insert Represents | 7 1
Dispatch anagent ! I
1 1
Lem—m-- Soo-- 4 . \ Delayed 1
; N Spatiotemporal State ! Copy !
I I e ———— N 1 1
! i ! Y i Evaluate i
: L : ! !
! | Action : i Threshold , I
! "—: (b) Average . Regression |
| Extra Time ! '
| ! |
1 1 1
I ! '
1 \ !

1
i
1
b (c) Estimation of

Replay

\Management
N e /

Historical Data Simulate

. Value Function memory |/
~ N - e

Fig. 2: Illustration of the WATTER framework.

with edges connecting it to other orders that can be shared.
This part involves maintaining the graph, identifying shareable
order groups, and assign workers to order groups.

(b) The Average Extra Time Threshold-based Grouping Strat-
egy. A simple but effective strategy is to dispatch an order
when the extra time is below an expected threshold 6. In
reality, the expected threshold reflects the benefit that can
be obtained from dispatching in the current spatiotemporal
environment. We notice that a smaller threshold can lead to
higher optimization results. However, a small threshold also
prevents the order being grouped with more suitable orders.
In Section V, we analyze that through adjusting the expected
threshold 6, then we can obtain different optimization results.
We transform the original METRS objective into a function of
the expected threshold 6, then we solve METRS by adjusting
the expected threshold for each order. Fortunately, we prove
that the reduced optimization objective possesses a convex
shape, which is advantageous for solving. Then, we employ
the gradient descent method to efficiently find the optimal
threshold of 6.

(c) The Estimation of Value Function. To reduce the optimiza-
tion objective into a function on the expected threshold 6, we
previously utilized the distribution of extra times. However, the
distribution may be impacted by spatiotemporal circumstances,
such as peak periods, traffic congestion, supply of workers, and
the demand for orders. Given historical data, we can estimate
the optimal expected threshold 6 [16], [15]. We formulate
the dispatch decision-making process as a Markov Decision
Process (MDP), treating each order as an agent. Offline
learning is achieved using components such as the main
network, target network, and replay memory. However, the
inherent learning process often faces challenges in converging
effectively due to a lack of high quality learning experiences.
To overcome this, we employ an off-policy training strategy
that utilizes a threshold-based strategy to generate learning
experiences and minimize the disparity between the result of
MDP value function and the optimal expected threshold value.
It allows us to fine-tune the threshold-based strategy based on
different spatiotemporal environments, ultimately determining

the desired expected threshold.

IV. GRAPH-BASED ORDER POOLING MANAGEMENT
A. Temporal Shareability Graph

In our WATTER framework, we enable orders to dynam-
ically join or leave the order pool. However, existing batch-
based methods [17], [1], [2] can only match orders within
a batch, which cannot efficiently find cross-batch groups. To
address this limitation, we introduce a temporal shareability
graph as the order pool, which offers two key advantages.
First, the match window can be dynamic and customized, un-
affected by the batch size. Second, the pool maintains edges to
represent the shareability relationships among orders, allowing
efficiently filter out non-shareable order combinations, then to
efficiently retrieve good sharing groups.

Definition 8. (Temporal Shareability Graph) Given an order
set O, the temporal shareability graph can be denoted by G =
(O, E). Each 0" € O represents a node in the graph, and
the edge e = (0", 00), 7.) € E represents that node o(*) and
node o) can be shared in a group before timestamp 7.

At any given timestamp, the snapshot of a graph pro-
vides the current shareability relationships among orders.
Clique [18] is a widely used cohesive subgraph structure for
network analysis. A k-clique is a dense subgraph that has &
nodes, and where each pair of nodes are adjacent. Existing
studies [19], [20] have demonstrated that the shareability
relationship is closely associated with the graph structure, as
stated in Theorem IV.1. Thus we can efficiently enumerate
shareable groups by applying clique listing algorithms [21].

Theorem IV.1. Given a group g containing k orders, a feasi-
ble route L can be generated only if the nodes corresponding
to these k orders in the shareability graph form a k-clique.

According to Theorem IV.1, the shareable groups in the
graph form cliques. The existing studies solely process the
graph as a snapshot. However, our objective is to enable the
graph to efficiently return the current k-cliques for decision-
making. Thus, in this paper, we consider a temporal shareabil-

ity graph, which can supports insertions/deletions of nodes,
and the expiration of edges. Given a group g and a generated
feasible route L, we use the 7, to denote expiration time of
the group, which is equal to the minimum slack time.

7, = min 7 — ¢ (L) —¢® (3)
oleg

The shareability graph is dynamically updated with the
arrival and departure of orders. Nodes and corresponding edges
in G are inserted or deleted accordingly. When a new order
o) arrives, it is inserted as a new node. Then, we traverse
G to find its neighbors that can be shared. The shareability
relationship not only involves orders being close in terms of
their release time, but also the proximity between pick-up and
drop-off locations. Orders that are far apart in either time
or space cannot be part of a feasible route. When an order
0\9) can be shared with o), we can find a group g with
feasible route L with the minimal travel cost that can serve
them together. A new edge ¢ = (0, 0/) 7,) is then inserted
to denote the shareability relationship between the two orders.

Note that the shareability graph only displays the shareabil-
ity relationships among orders. It can be used to efficiently find
shareable groups by enumerating k-cliques. Then we choose
the group with the smallest average extra time among all
possible shareable groups for each order as its best group.
We use the best groups for decision-making and dispatching.

B. The Order Pooling Management Algorithm

To manage the online arriving orders, we introduce an order
pooling management algorithm that processes orders in real-
time. The orders are inserted into the order pool, which is
maintained as a temporal shareability graph. Periodically, we
check the current status of orders and dispatch them according
to a specific strategy. If the order is not dispatched, it will stay
in the pool, awaiting better grouping opportunities.

As shown in Algorithm 1, we iteratively process new orders
and insert them into the pool (lines 2-4). During the insertion
process, we maintain the best group information of each order
in G, which refers to the group that has the smallest average
extra time among all the shareable groups that contain the
order. We then remove any edges and groups that will expire
after the current timestamp of system (lines 5-6). Next, we
check all orders in the pool and retrieve the best group in the
current spatiotemporal environment. Since we maintain a map
of best group G, during pool updates, the time cost of retrieval
operation is O(1) (lines 8-9). Each order in the order pool has
its own waiting time, but can also leave the pool early if certain
conditions (e.g., Algorithm 2 implements MakeDecision) are
met (line 10). Note that here we use asynchronous periodic
checks, which are performed periodically instead of after every
insertion. If we can find a valid group g, we assign it to the
closest available worker (lines 11-13). If o(¥) does not have
a shareable group, it will remain in the pool and wait. If it
exceeds the waiting time limit, we reject it (lines 14-16).

In order to facilitate quick response of decision-maker, it is
important to store the information of the current best group

Algorithm 1: Order Pooling Management Algorithm

Input: A set W of m workers, a set O of n orders
sorted by arriving time

Output: The served groups S and the failed orders F
1 initialize shareability graph G and best group map G,
2 foreach new order oY) € O do
3 insert o() into the pool
4 update system current timestamp t, < t(*)
5 foreach g, e that exipres after ts do
6 L remove orders in g, e from the graph

7 /* Asynchronous Periodicity Check Orders */
s | foreach o) € G do

9 g < GhlJ]

10 if g exists and MakeDecision (g, t@) then
11 assign the g to a worker to serve.

12 remove orders in group g from the graph
13 S.append(g)

14 else if o) exceeds wait time limit then

15 remove order oU) from the graph

16 F.append(o))

17 return S, F

of each order in the pool. Each group corresponds to a k-
clique in the shareability graph. When the graph is updated,
the existing best groups may also need to be updated. There
are four situations that can lead to updates of the graph: (1)
order arrival (line 3); (2) order departure (line 12, 15); (3) edge
expiration (line 6); and (4) group expiration (line 6). Due to
the space limitation, please refer to Appendix A, B of our
technical report [22] for the detail algorithms to handle them.

With the order pool, we enable customized waiting time
for each order on the platform. A decision-maker is crucially
needed to determine whether the current best group is suf-
ficient for dispatch. For example, the online strategy is to
dispatch orders as early as possible, which notifies riders in
the shortest time; the timeout strategy is to dispatch orders as
late as possible to obtain the best group opportunity.

V. AVERAGE EXTRA TIME THRESHOLD-BASED GROUPING
STRATEGY

A. Threshold-based Strategy

As we discussed in Section I, existing solutions that respond
to orders immediately or within a static mini-batch time
can prevent riders from being grouped with potentially more
suitable riders in the near future. Then, the platform may miss
some good opportunities to reduce the extra time of riders.
However, if the platform holds orders for too long, they may
timeout. Thus, a smart decision strategy to hold or dispatch
the orders is the key component of the platform, which is also
the most challenging part of the METRS problem.

To solve the decision problem, we can examine several case
studies. For orders whose current best group is optimal, we
can dispatch them. For orders that are difficult to group with

Algorithm 2: Average Extra Time Threshold-based
Grouping Strategy

Input: An order group g, system current timestamp ¢
Output: whether dispatching (True) or holding (False)
1t 4+l « the earliest timeout time of orders in g
2 if t, >t 410 then
3 | return True
4 t, + average extra time of order in g

50 average expected threshold of orders in g
6 return £, < 60

others, we also need to dispatch them immediately, even if
their current group quality is not optimal. Orders located in
popular areas can continue to wait until better group results
are available. Thus, whether to continue holding or dispatching
immediately depends on the spatiotemporal environment of the
orders, including their pick-up and drop-off locations, as well
as their release time.

We can use historical data to estimate the possible grouping
results and calculate the expected threshold 8() of extra time
for each order o(Y). We will introduce how to select a good
() for each order in Sections V-C and VI. The threshold (")
can be considered as a reference: when the extra time tg) of
o) in a group arrangement is smaller than ("), it means the
group is better than the historical performance and o(*) should
be dispatch with no more wait; otherwise, the order o(® may
wait for a better group in the future.

Based on the thresholds, we propose a flexible decision
strategy for holding or dispatching orders. As shown in Algo-
rithm 2, we filter out the orders wait longer than the limit n(i)
(lines 1-3). Those orders can be served when there are suitable
workers, otherwise will be rejected. We use a strategy based
on expected threshold to decide whether to dispatch. First, we
calculate the average extra time of orders in group g (line 4).
Then, we use the average estimated threshold 0 as a reference
to make the final decision (lines 5-6).

B. Reduction of Problem

In this section, we present a probability analysis of extra
time. Our strategy is influenced not only by past orders, but
also by the arrival probability of future ones. Therefore, we
introduce the expectation of the original optimization objective
E(®(W,0O)) as our optimization goal, following the setting in
many existing learning-based methods [13], [15], [23].

For the objective function 2 of the METRS problem
O(W,0), its first part > ot # is the extra time for all
served orders; its second part))co- pl) is the penalty
received due to rejected orders. As we discussed in Definition
7, t% < p(® holds for all orders o). To minimize O(W,0),

we need to find a suitable time to dispatch orders so that tgl)
is as small as possible and the service rate y = % of the
platform is as high as possible.

For each served order o(¥), we introduce an indicator func-
tion I(7): I(i) = 1 means the group of o{*) has average extra
time smaller than its average expected threshold, that is £, < 6;

I(i) = 0 means o) has waited more than its limit wait time
7. Thus, Ot = O' UOP, where O is the set of the served
orders with I(i) = 1 and O° is for the served orders with
I(4) = 0. Then, the optimization objective can be rewritten as
follows:

min E(Z t& 4 Z p(j))

o(i)eo+ ol eco—
= min E(Z 0 4 Z (tg’“>+n<’“))+ Z 9
oM eo! o(k) 00 o eo—
<minB(Yt + Y p® 4 YY)
oD eo! o(F) 00 oi)eo—
=minE(Y L6t + (1—1()p""))
o eo

When the order o is dispatched by threshold (i.e., I(i) =
1), the platform incurs a loss of t((f), otherwise the platform
at most incurs a loss of p(* if 0() waits more than limit or is
rejected. Therefore, the optimization objective is to minimize
the total loss incurred by all orders.

Intuitively, if we minimize the extra time t&” for each served
order, we can minimize ®(W,O). By utilizing Algorithm 2,

we have:
ST < N 0D =d|g] 5)

odegg o eg

where §(") € © represents the expected threshold that we have
selected for each order. We use 6 to denote average expected
threshold for all orders in the current best shareable group. The
extra time tgl) may change as new orders join or old orders
leave the pool. It cannot be directly constrained. However,
because all orders are dispatched according to the dispatch
strategy, we can establish an upper bound on the original
optimization problem:

minE(> 1@t + (1 -1(:))p?)
o eo
<minE(Y 106" + (1 - 1()p") ©
ol eo

The reduced problem is a function of (9 and p(*), where
p(?) is determined by the order information and can be consid-
ered constant. Thus, the only variable we have is 6(*). Under
our strategy, larger threshold #(*) increases the probability of
satisfying the decision condition and dispatching the order.
We use p(I(7) = 1) to denote the probability of the indicator
function being 1. Let f(z) be the probability density function
of the distribution that . follows, and let F(zx) be its
cumulative distribution function. Then, we have:

0(1)]
p(I(0) = 1) = / f(@)da = FO), ™

where F(0()) measures the probability of each order o(*)
being dispatched when its group’s average extra time is smaller
than its average expected threshold.

Then, the problem can be rewritten as:
minE(Y 100" + (1 ~1(2)p")

o eo
= min Y p(I) =)0V + (1 - p(1() = 1)p”
odeo
:>m1n Z FOD)0D + (1 - F(O™))p®
oDeo
; (@) _ (D _ g ()
= min > p =P —0)F(6Y)
oDeo
= max > Y —0)Fe?) ®)
oM eo

Here, p(— 6 represents the minimum gain in the loss
space that the platform can obtain after dispatching order
oY), which is a monotonically decreasing function of 6. By
setting p() = 7'(1')—t(i)—cost(lz(f)7 lg)), then p(¥ —0(*) denotes
the slack time of order in the group. A longer slack time means
the order is dispatched to a more appropriate group in a shorter
time. Since F(A(?)) is a cumulative distribution function, it is
monotonically increasing. Therefore, the product of these two
functions must have a maximum value. In other words, the
reduced objective function is a convex function of thresholds
of orders. Our goal is to find the threshold #() that corresponds
to the maximum value of this product function.

C. Distribution Fitting and Optimization

As mentioned before, we treat the extra time ¢, as a random

variable that follows a specific distribution. We then transform
the optimization objective into a function of the expected
threshold 6. There are two key challenges: (1) determining
the specific distribution of ¢., and (2) optimizing the objective
function under the distribution assumption.
Distribution Fitting. Regarding the extra time of orders, we
have several observations about its distribution: (1) Shorter
orders may exhibit smaller extra time due to the difficulty of
inserting detours along their routes; (2) Orders with both the
pick-up and drop-off locations in popular areas may experience
smaller extra time because there are more opportunities for
sharing with similar orders; (3) Orders released during peak
hours may result in smaller extra time as a large number of
proper orders can be the group candidates. Thus, we can rea-
sonably assume that the extra time of orders can be clustered,
with many orders falling into the same sub-intervals. However,
obtaining prior knowledge about the specific distributions for
these clusters and the confidence level with which they adhere
to these distributions is challenging.

For random variables influenced by multiple factors, Gaus-
sian Mixture Models (GMM) [24] are commonly used. GMM
incorporates multiple Gaussian distributions and combines
them based on weights, making it suitable for fitting complex
distributions. In the case of the extra time t., we can consider
each influencing factor mentioned earlier as a sub-component
of the GMM, collectively contributing to the overall dis-
tribution. The fitting of GMM can be accomplished using
the Expectation-Maximization (EM) algorithm [25], which is
widely employed for this purpose.

Algorithm 3: Distribution Fitting and Optimization

Input: order set O, historical records of extra time H
Output: optimal expected thresholds ©

1 M < the GMM fitting result on H

2 F < the CDF of M

3 foreach o) € O do

4| g0) =" -0

5 0 « arg miny F(0) * g(6)

6 | @« 0eu{s}

7 return ©

Objective Optimization. Our reduced optimization objective
is a convex function of the thresholds 6 of orders o(i), ensur-
ing the existence of a maximum value. For convex functions
and approximate convex functions, various methods such as
Newton’s method or Gradient Descent can be employed to
find the optimal. While these methods may encounter local
optima, for the optimization objective in this paper, only a
few iterations are required to obtain the solution.

As shown in Algorithm 3, we firstly utilize historical data of
the extra time as the distribution to be fitted. We then employ
the EM algorithm to fit a Gaussian Mixture Model to this
historical data (line 1). After obtaining the fitted distribution,
we can easily calculate its cumulative distribution function F'
(line 2). For each individual order o(*), we can express the
function g as g(f) = (p) — 6) based on its penalty term
(line 3-4). By combining these two functions, we can use
existing optimization methods (e. g Gradient Descent) to find
the optimal expected threshold #() (line 5-6).

To summarize, we reduce the METRS problem to maximize
a function of #(). The core challenge of the reduced problem
is estimating the expected threshold 69 for each order o(?).
Then, we utilize a Gaussian Mixture Model for distribution
fitting and employ Gradient Descent to optimize the reduced
objective. However, in practical situations, the optimal group
of orders is usually dispatched quickly, then leads to no
enough samples to accurately fit its distribution. While we can
make assumptions about the distribution of t., the obtained
solution is only a coarse-grained result. The dispatch strategy
is still heavily influenced by the spatiotemporal environment.
Moreover, it is difficult to get the distribution information of
new arrived orders in the future.

VI. REINFORCEMENT LEARNING BASED ESTIMATION

To overcome the shortcomings in Section V-C, we can
estimate the expected threshold based on a reinforcement
learning approach offline with historical data. Combined with
the online maintenance of the current best group, the dispatch
strategy can be fine-grained tailored for each order.

A. Dispatch Strategy as MDP

For the orders in the pool, they wait and go through multiple
decisions until are either dispatched or expire. In this paper,
we propose to model this process as a Markov Decision
Process (MDP) from a local view [26], [23], [13], where each

individual order is modeled as an agent. The MDP captures
the sequential decision process as an agent that observes the
current environment, takes an action a, and transits from state
S¢ 10 S¢At, then receives a certain reward r. Here, we use
s¢ to denote the time state, such as sg representing the initial
state at time 0. Next, we introduce the details of the state,
action, state transition and reward of our MDP model.

State. Follow the design in the existing study [23], we consider
multiple spatio-temporal features in state s;. These spatio-
temporal features consist of two components: the basic feature
and the environmental feature. The basic feature contains
information such as the order’s pick-up location and release
timestamp. We use location index and time index to quantize
the basic spatio-temporal feature of the order into and a num-
ber of regions and timeslots. The location index is obtained
by dividing the examined city area into n X n region grids,
which is commonly used in existing studies [23], [27]. The
time index is obtained by dividing the time into intervals of
At seconds. The region information of the pick-up and drop-
off locations of the order is represented as a vector sy, using
one-hot encoding. The timeslots of the order’s release and wait
are connected and fed into a two-dimensional vector sr.
The environmental features include the current demand
and supply distribution of the platform. We consider the
current demand distribution of existing orders on the platform,
including the distribution of pick-up locations and drop-off
locations represented by vector so. The supply distribution of
workers in each region is represented using vector sy,. The
distribution vectors are all calculated by the location index.
Combining this data, the spatiotemporal environmental state
can be written as s; = [sr, ST, SO, Sw]-
Action. For each decision phase, there are two types of actions
that an agent can perform. The dispatch action with a = 1
involves grouping the order and finding a worker to serve it.
Specifically, the agent considers that its corresponding order
has matched the desired group and can leave the pool. Another
action is wait with a = 0. Specifically, the wait action means
the agent thinks its corresponding order will be matched to a
better group in the future.

State Transition. The sequential decision process involves
waiting actions during the life cycle of an order. A wait action
triggers a transition to the next state with the same position but
a different time slot and environment. In the case of dispatch or
expiration, the order will terminate its life cycle and receive a
final reward. The dispatch action assigns the order to a worker
along with the current best group, while expiration occurs in
situations where the order has been waiting in the pool for too
long and cannot be finished before its destination deadline.
Expiration also can occur implicitly in decision process and
is unobservable to the agent. Since the rider becomes more
impatient, the order may be canceled at any time, which is
also considered as an expiration for simplification.

Reward. The definition of reward r; depends on the opti-
mization objective of the platform, which in this paper is
transformed into Equation 8. Let T be the time order to be
dispatched or rejected. The key target to solve MDP is to learn

the state value function V. (s;) = E(Zz:lt v~ 1ry ;) under
the current strategy 7 [15], [16], [23], where ~ is the discount
factor that controls how far the agent looks into the future
for rewards. By using MDP to model the dispatch decision,
the expected extra time threshold is corresponds to the “state-
value function”. The strategy 7 used here is Algorithm 2. That

is, 00 = p(— v (s{Y), where s is the spatio-temporal
environment of the order 0o(9. The Bellman Update [15], [16]
corresponding to each of the two different actions are

(©) (©)

i p—t
Va(st?) Y o .
— At +77"Va (s, a)(1 — I(expired)) a=0

a=1

The wait action (i.e., @ = 0) may result in two types of
rewards: (1) continuing to wait in the next round, which has
an immediate reward of —At with indicator I(expired) = 0.
Only in this case, the state-value function is related to future
states and rewards. (2) being expired, which has a reward of
0 with indicator I(expired) = 1. When the agent takes the
dispatch action (i.e., a = 1), the final reward will be the sum
of a positive penalty reward p) and a negative detour time
reward tg) of the order in the current best group.

Although we set an immediate reward for each action, the
actual reward accumulates over each decision phase. It can be
calculated as Z;(T:o/ at —~'At. By setting the discount factor
v = 1, the reward of expired order accumulated over the
decision phases is equal to the negative waiting response time
—tST’). Regarding dispatched orders, the reward is calculated
as the slack time p(9) — tt(f). A higher slack time indicates
a higher quality group for the order. Therefore, the agent is
trained to prioritize better group quality (i.e., more slack time)

and to avoid order expiration (i.e., negative reward).
The accumulated reward R can be calculated as follows:

iy =t 4 = =p® —2 dispatched
R(sg") = @ o _ ©)
—t’ = —maxt, expired
where s(()i) is the initial state of agent representing order

oY), Note that when using the value function in Algorithm 2,
we calculate 0@ as p() — V,,(sgl)). It’s because we estimate
Vi (st as p® — 0@,

B. Deep-Q-Network Learning Approach

The aim of MDP is to maximize the expectation of the
accumulated reward for each agent. If an agent takes too many
wait actions, its correspond order may expire and leads to
a negative reward. When dealing with decisions, the agent
will carefully consider whether a wait action is needed in
each decision phase to obtain a higher cumulative reward.
Therefore, the total benefit of MDP is consistent with our
optimization objective Equation 8. '

We use the the neural network V(sgl)) to represent the
state-value function Vﬂ(sgz)), which is the estimation of the
expected extra time threshold in Equation 5. Then, we decide
whether to dispatch and ask agents to get the maximum
benefit during the training phase. As a result, the learned
state-value function is the optimal expected threshold 6. To
achieve this, following existing value-based methods such as

TABLE III: Experimental Settings.
|

Parameters Values
the number m of riders (NYC) 0K, 75K, 100K, 125K
(CDC, XIA) 30K, 40K, 50K, 60K
the number n of workers 3K, 4K, 5K, 6K
the deadline scale parameter T 1.2, 14, 1.6, 1.8
the maximum capacity of vehicles K, 2,3,4,5
the balance parameter o and 3 1

Q-Learning [28], [29] and Deep Q-Networks (DQN) [30],
[23], we use a replay memory M to store the experience tuples.
There are two networks: (1) the main network V, used to
estimate the value function; (2) the target network V, which
is a delayed copy of V and is used to stabilize the training
process. Mean-squared Temporal-Difference (TD) Error is a
commonly used loss function to estimate the value function:

lossiq(s) = (r¢ + ’V‘A/(ng) - V(Sgi)))2~

However, the TD loss alone is insufficient to meet our
expectations for estimating the expected threshold, because
the TD loss only guarantees the value relationship between
states. We also require the value function to have a relationship
with the extra time ¢, so that it can be directly utilized in the
threshold-based strategy. Therefore, we introduce the target
loss to learn the threshold.

lossig(s) = (0 = 09 =V (si"))2,

where 6() is the optimal threshold obtained through distribu-
tion fitting and optimization in Section V.

The TD loss guides the agent in selecting the action, either
waiting or dispatching, that has a higher overall reward. This
ultimately helps the value function estimate better thresholds.
Meanwhile, the target loss aims to align the DQN’s learning
outcomes with the existing strategy, allowing for fine-tuning
through actions based on the established policy. Consequently,
our final loss is a weighted sum of these two parts.

ZOSS(St,a,5t+At,7’t)€1\4(S) = wlossiq + (1 — OJ)lOSStg,
where w is a weight parameter to balance loss;q and [0ssg.

VII. EXPERIMENTAL STUDY

In this section, we present the experimental setup and results
of our algorithms.

A. Experimental Setup

Data Set. We evaluate our algorithm on three real-world city
datasets. The first is a public dataset collected from yellow
taxis [31] in New York City (NYC), USA. The second and
third are order datasets collected from the GAIA platform of
Didi Chuxing [32] in Chengdu (CDC) and Xi’an (XIA), China.
We use order data from 1 to 06 and 08 to 31 July, 2013 for
NYC, from 1 to 29 November, 2016 for CDC and from 1 to
30 October 2016 for XIA to train the value function proposed
in Section V. In the experiments for evaluating parameters, we
use order data from 07 July, 2013 in New York, 30 November,
2016 in Chengdu and 31 October 2016 in Xi’an. Each order
in the dataset contains the longitude and latitude of the pick-
up and drop-off locations as well as the release time of the

order. The specific experiment-related parameters are shown
in Table III (the italic values are the default parameters).
Implementation. We simulate ridesharing in our framework
using the following settings. Follow the grid index construction
methods in existing studies [1], [23], [27], we partition the
city into several cells to serve as a grid index to speed up
workers and riders search. We tested the performance impact
of different grid size and choose 10 x 10 cells as the setting of
grid index. We set the watching window for each order (e.g.,
n® = nx cost(ll(,i), ll(;))) and choose 1 = 0.8 as the default
value. We also choose time slot size At = 10 (seconds) as the
default value. (For a detailed analysis, please refer to Appendix
D, F, G of our technical report [22]). For the implementation
of the reinforcement learning model, please refer to Appendix
C, E of our technical report [22].

We treat each record as an order with one passenger and thus
a k-clique in our framework can represent a group of orders
with k riders. In addition, we set the deadline for each order
(e.g. 7 =t 4 7 % cost(1$”,17)), which is a frequently
used setup in numerous previous studies [9], [4], [2]. To
achieve fairness, we generate the maximum passenger capacity
parameter K, and the pick-up position for workers for the
three datasets based on specific distributions. We uniformly
sample initial locations for workers using the distribution of
orders’ pick-up locations. The vehicle capacity k() of worker
is uniformly sampled within the range [2, K,,].

All experiments are implemented in C++ and compiled us-
ing -O3 optimization. The experiments are conducted on a sin-
gle server equipped with a Xeon Silver 4214 CPU@2.20GHz
and 128 GB RAM. All algorithms run on a single thread.
Compared Algorithms. We compare our algorithm WATTER-
expect with the following algorithms:

o WATTER-online. (this paper) A variant baseline imple-
mented in the Order Pooling Management Algorithm that
uses online strategy for dispatching orders. Each order is
dispatched as early as possible.

o WATTER-timeout. (this paper) Another variant baseline im-
plemented in the Order Pooling Management Algorithm that
uses timeout strategy for dispatching orders. Each order is
dispatched as late as possible.

e GDP [9]. An online-based algorithm where orders can only
use information from existing orders. It greedily tries to
insert the pick-up and drop-off locations of orders into the
worker’s route.

e GAS [2]. A batch-based algorithm where orders within a
batch are processed together. It generates an additive tree
for all orders that can be served by each worker and finds
the group with the maximum utility in the tree to dispatch.

Measurements. All algorithms are evaluated in terms of Extra
Time(s), Unified Cost [9], Service Rate(%) (|O7|/|O|) and
Running Time(s). The Unified Cost UC is calculated by the
sum of worker cost and penalty for rejected orders. Following
the existing study [9], we set the balance parameter as 1 in
UC, and the penalty of each order as 10 x cost(i},1").
The Running Time(s) is the average algorithm running time of

® GDP Vv GAS WATTER-expect ® WATTER-online 9 WATTER-timeout

x10

RN

Extra Time (s)
o w0 %o
\X
Extra Time (s)
‘0 %0 %

w.
IS
w

Extra Time (s)
%% 4o L5 <p
NX
S

7050 075 1.00 125 3 4 5 6
n x10° n

a

x

n

(a) Extra Time(NYC) (b) Extra Time(CDC) (c) Extra Time(XIA)

0 o a0
2 2.0 7z
i=3 k=3 . =3
S8 S, S®
= A RN]
g\ 2 ER
= c o 2
R ER ERS
S S5 =S
7050 075 100 125 3 43 5 & A T R 6
n x10° n x10* n x10°

(d) Unified Cost(NYC)

—~

e) Unified Cost(CDC) f) Unified Cost(XIA)

K7

Service Rate (%)
o_0 . 0_0.0
g O D
Service Rate (%)
0\)« 00_0) O(P Og

Service Rate (%) —~
» %% %5 %
o m
Service Rate (%)
g\;’ 0'7 gx)‘ Qg Q)
o \

w
IS
@
[
w
IS
»
o

w
IS
»
o

050 075 1.00 125
n x10 n xi0* n x10°

(h) Service Rate(CDC)

(g) Service Rate(NYC) (i) Service Rate(XIA)
s

Pt

Running Time (s)
% 5w o
Running Time (s)

(20 SN

Y lo—@ Py
—@

0.50 075 1.00 125 6
n x10° n 10 n xi0*

Running Time (s)
o, 0,0 0 0
RN S

w
IS
"
w
IS
»
EN

(j) Running Time(NYC) (k) Running Time(CDC) (1) Running Time(XIA)

Fig. 3: Performance of varying n.

each order. Except for Extra Time(s), other three metrics are
widely used in the existing large-scale ridesharing studies [9],
[2], [33]. We early terminate the algorithms that not completed
experiments within 24 hours.

B. Experimental Results

Impact of Varying Number of Riders. Figure 3 presents the
results of varying the number of orders. In all datasets, our
proposed algorithms WATTER-expect, WATTER-online, and
WATTER-timeout are more effective (i.e., lower unified cost
and extra time) than existing approaches with the increase of
the number of orders. For instance, when n = 50k, WATTER-
expect achieved 12.2%, 18.4%, 35.7% and 40.1% lower extra
time compared to WATTER-online, WATTER-timeout, GAS
and GDP in the CDC dataset, respectively.

Regarding service rate, our WATTER framework can out-
perform GDP and GAS. For instance, when n = 50k,
WATTER-expect achieved 2.3%, 11.7%, 36.9% and 41.0%
improvement in service rate compared to WATTER-timeout,
WATTER-online, GAS, and GDP in the CDC dataset, re-
spectively. As for running time, GDP is the fastest algorithm
due to its greedy insertion without enumerating possible order
groups. GAS, however, has an exponentially increasing time
cost due to an increase in the number of orders, thus is the
slowest and cannot finish within 24 hours on NYC dataset.
Among the WATTER algorithms, WATTER-online is faster
than WATTER-timeout because it maintains a small enough
order pool to minimize the insertion and update costs of new
orders. Due to the need to use neural network, the running
time of WATTER-expect is second-highest for most cases.
Impact of Varying Number of Workers. Figure 4 presents
the results of varying the number of workers. Across all

® GDP Vv GAS WATTER-expect ® WATTER-online 4 WATTER-timeout

p
p
A

4
4
4

.

Extra Time (s)
%l Lo Ly

Extra Time (s)
EREAIE S
|
x i ;
Extra Time (s)
0570 7
XN

w
IS
I
EN

m x10'

(a) Extra Time(NYC) (b) Extra Time(CDC)

x10* x10°

—
)

) Extra Time(XIA)

o

2N PN NS

Z; z LB

SR [SEN] «5

B 5 B o B

£% £ 150 14—

5 \;)' S 5 S 4
o T i i 5 6

m x10° m 10°

—~

d) Unified Cost(NYC) e) Unified Cost(CDC) (f) Unified Cost(XIA)

N}

=

Service Rate (%)
o_ 0, 0,

5% > Y

Service Rate (%)

o 0o_ 0, 0

5 Y

w
IS
»
o

m x10° m x10° m x10°

(g) Service Rate(NYC)

(h) Service Rate(CDC) (i) Service Rate(XIA)

x10”

2 Z .0 2
o Y Py Py Q.\b
E n g ﬂ,?‘ E
e &= RN
o o 509 o @
ENT g RNy
Ed RN g Q_@‘
Z o—o—9—9 RS 2% s 3
3 4 5 6 o 3 4 5 6
m x10° m 10

(j) Running Time(NYC) (k) Running Time(CDC) (1) Running Time(XIA)

Fig. 4: Performance of varying m.

datasets, our algorithm delivers the best performance in all
metrics except for running time. As the number of workers
increases, both the extra time and the unified cost of all tested
algorithms decrease. This is because it becomes easier to find
an available worker closer to the order group, reducing the
worker’s response time and detour and increasing the service
rate. For instance, in the NYC dataset, when m = 6000,
WATTER-expect outperformed WATTER-timeout, WATTER-
online, and GDP, achieving a 4.3%, 9.6%, and 12.8% improve-
ment in service rate, respectively. Notably, the performance
of the WATTER-online method exhibits less variation with
increasing drivers on the CDC and XIA datasets. This is
attributed to the fact that the orders in these two datasets have
more dispersed pick-up and drop-off locations compared to
the NYC dataset, where most orders are concentrated in the
Manhattan area. As a result, the main limitation of WATTER-
online is the difficulty in finding suitable shareable group.
Impact of Varying Deadline. Figure 5 presents the results of
varying the orders’ deadlines. Under small deadlines, WAT-
TER algorithms show little difference from GDP and GAS
in terms of extra time. It’s because small deadlines do not
allow orders to wait for too long. However, as the deadline
increases, the WATTER-expect outperforms GDP and GAS.
For example, when 7 = 1.8, WATTER-expect has a decrease
of 23.1%, 27.7%, 48.2%, and 65.3% on unified cost compared
to the other four algorithms on the XIA dataset, respectively.
The longer deadlines improve the service rate of GDP by
making it easier to insert orders into workers’ routes. However,
GDP fails to provide better groups due to the lack of utilization
of future opportunities. For GAS, the unified cost is the
highest in most cases because it only considers the payment
of orders when selecting groups, without taking into account

® GDP Vv GAS WATTER-expect ® WATTER-online 9 WATTER-timeout

x10” x10 x10
z 2N R
2 N 4
=S EN =Y -
£% £ N =
AN A A
ST 12 1.4 1.6 1.8 12 1.4 1.6 1.8 0712 1.4 1.6 1.8
T T T

(a) Extra Time(NYC) (c) Extra Time(XIA)

x10° x| x10
- - I
ERN RO AN
S SN S .S
3% 2 2V B
L=y b= =N W =
5 N 5 Ny s Q(?“: =
6y s h‘
12 14 16 18 K . X K 2T 14 16 18
T T T
(d) Unified Cost(NYC) (e) Unified Cost(CDC) (f) Unified Cost(XIA)
S i SN IS
2% PES 2
g8 g g
& Q‘J AN I
o X 15 15
e ¥ 2> 2
ERORM S £
g e !
12 14 16 18 12 14 16 18
T T T

(g) Service Rate(NYC)

x10”

(h) Service Rate(CDC)

x10”

(i) Service Rate(XIA)

2 z . 2

S 6 o W PR

E°ly £ £

e E S =

> 2" 2

) E\° ERY

=l =] £ 9

20 @ v ® ® R 2 & — &

12 14 16 18 2 14 16 18 12 14 16 18
T T T

(j) Running Time(NYC) (k) Running Time(CDC) (1) Running Time(XIA)

Fig. 5: Performance of varying 7.

the workers’ cost. However, longer deadlines increase the
possibility of group orders. Furthermore, the longer wait time
for riders allows more workers to become available, enhancing
effectiveness of our algorithms. We observed that WATTER-
online shows the most significant improvements across all
performance metrics when varying the deadline. It’s because
the bottleneck of WATTER-online lies in the challenge of
immediately finding shareable groups. Increasing the deadline
greatly reduces the difficulty.

Impact of Varying Maximum Capacity of Workers. Figure 6
presents the results of varying the workers’ vehicles maximum
capacity. The WATTER-expect algorithm shows superiority
when the maximum capacity changes. For instance, when
K,, = 4, WATTER-expect achieved the following reductions
in extra time compared to the baselines: 15.3%, 18.9%,
23.5%, and 28.1% on CDC dataset, respectively. Increasing
the maximum capacity K, significantly decreases the extra
time and unified cost for GDP. However, our algorithms show
less fluctuation due to four reasons: (1) when optimizing for
extra time, the performance of the group with a capacity
of 2 is dominant; (2) the GDP greedily inserts workers
without considering waiting time and dispatch the order as
long as there is a slot available for insertion. Increasing the
capacity limit can effectively improve the service rate, further
optimizing extra time and unified cost; (3) the non-preemptive
mode we adopt means that workers cannot serve two groups at
the same time. If the capacity of a worker’s vehicle exceeds the
size of the group to be served, the excess cannot be utilized
efficiently; (4) the shareability graph on the CDC and XIA
datasets is sparse, making it difficult to enumerate groups
whose size is greater than 2. This can also be verified by the
running time, as our algorithms show an increase in running

® GDP Vv GAS WATTER-expect ® WATTER-online 4 WATTER-timeout

x10 x10”

Extra Time (s)
‘@'Y %"
‘
Extra Time (s)
7
% ~p

ﬂ

p

) I

) :
9, 7

> %
4

o

Extra Time (s)
2,0 2p sy
MX

3 4
K, K, K,

-
w
a9

o
w.
IS
w

(a) Extra Time(NYC) (b) Extra Time(CDC) (c) Extra Time(XIA)

10 a0’

e ,\
G % %
§ ©
3 \u \ SR 3 N
A\ N B o 1s - - o 3.
b= 4 L b=l
5 X 5.0 H—\:>o 5
N ~
3 3 4 2 3 4 5 2 3 45
K, K, K
(d) Unified Cost(NYC) (e) Unified Cost(CDC) (f) Unified Cost(XIA)
g gbgb — — gg‘-b:
2 & R 23
=D Pl oL E%p e
P o o RN
29 2 Y s & ././
) RN EA '/'/"_4
& i bR

[

3 72 ER R
Ky K, K.

ES
3

(g) Service Rate(NYC)

(h) Service Rate(CDC) (1) Service Rate(XIA)

x10

o 2 B
O =z Z &
2 PANS 2%
E QY £ 9 N
Ee SN I—<Q',»
e 20 2o
ES Eo ES
ER™ ° SO 90— —§ 4 59

ERe : 4 o Z 2

QT 2 3 4 2 3 4 5 QT 2 3 4 5
v

s

K, K,

(j) Running Time(NYC) (k) Running Time(CDC) (1) Running Time(XIA)

Fig. 6: Performance of varying K.

>z Response Time Detour Time
5300

£

=

£200

#

55}

o

o0

£100

2

<

0 WATTER WATTER WATTER GDP GAS

-timeout
Algorithms

Fig. 7: Trade-off between response and detour time.

-expect -online

time as the maximum capacity increases in the NYC dataset,
but not on the CDC and XIA datasets.
Trade-off between Response and Detour Time. We present the
average proportions of response time and detour time for all
served orders in Figure 7. The results are obtained on the CDC
dataset with default parameters. We can observe that among
the three variants of the WATTER algorithm, the WATTER-
online achieves the lowest response time but also results in the
highest detour time. On the other hand, the WATTER-timeout
exhibits the highest response time and the lowest detour time.
This supports our assumptions regarding response time and
detour time: the longer waiting increases the likelihood of find-
ing a higher-quality group, leading to a smaller average detour
time. Meanwhile, the GDP and GAS show the same trend with
WATTER-online. In contrast, WATTER-expect achieves the
lowest extra time through effectively balancing response time
and detour time, which allows orders to wait for an appropriate
short time, and effectively reduces detour time.
Summary of the Experimental Results
1) In terms of the total extra time and unified cost, our
order pooling management algorithms WATTER-expect,
WATTER-online and WATTER-timeout show superiority
compared to the online-based method GDP and batch-

based method GAS.

2) The threshold-based strategy has a noticeable effect on
balancing the response time and group quality. The
WATTER-expect have less extra time than WATTER-
online and WATTER-timeout up to 15.3% and 18.9% on
CDC dataset when K,, = 4.

3) GDP are more efficient than our algorithms when the
orders are more similar(e.g., in the NYC dataset). It
is because the shareability graph are larger and denser,
which makes huge group enumeration cost.

VIII. RELATED WORK

The ridesharing problem is a variant of the dial-a-ride prob-
lem, which involves planning the routes of workers to serve
orders with specific pick-up and drop-off locations. Unlike
the dial-a-ride problem [8], [1], [34], the ridesharing problem
primarily focuses on the additional benefits of grouping orders
together. Recent studies [9], [33], [2] can be classified mainly
based on processing frameworks and optimization objectives.
Process frameworks. Online-based methods use the insertion
operator as a heuristic solution for planning work routes. They
greedily and incrementally insert each newly arriving order
into the worker’s current route based on certain objectives.
Zheng et al. [35] enumerate all possible insertion positions to
search for the optimal solution. Huang et al. [11] proposed the
structure called kinetic tree, which maintains and provides the
optimal schedule for vehicles when new orders arrive. Tong
et al. [9] proposed a dynamic programming (DP) algorithm
to insert and check constraints, reducing the operation time
from cubic to linear. Wang et al. [33] proposed demand-aware
insertion based on predictions about future orders.

Batch-based methods process all orders within a mini-
batch time at once. They typically enumerate all possible
groups to find the optimal one and then assign the groups
to workers [36], [17], [1], [2], [37]. Bei et al. [17] formulated
the problem of combinatorial optimization between orders
and workers. Cheng et al. [1] use machine learning models
to predict future vehicle demand. They then used a queue-
theoretic framework to balance the demand and supply. Zeng
et al. [2] proposed an index called additive tree to accelerate
the enumeration and greedily choose the most profitable
group to serve. The effectiveness and runtime of batch-based
methods depend on the batch size setting. If the batch size
is large, the runtime increases exponentially. But, the utility
achieved is less competitive than that of online-based methods.
Optimization objectives. The primary optimization objectives
for ridesharing services are from the perspectives of the plat-
form and workers, with other objectives acting as constraints.
From the platform’s perspective, previous studies [1], [2], [3]
have mainly focused on maximizing revenue and the number
of served riders. The platform’s revenue is calculated by
subtracting travel cost of workers from the payment of riders.
Given a fixed service rate, reducing the worker’s travel cost
can increase revenue.

Many studies [4], [5], [6], [38] focus on decreasing travel
costs from the worker’s perspective. This can increase both the

platform’s revenue and the workers’ earnings. To unify these
objectives, Tong et al. [9] introduced the objective of a unified
cost, which integrates the three goals into one and illustrates
the relationships among them.

Regarding the rider’s perspective, most existing studies [8],
[39], [9] impose the time constraint that riders must be deliv-
ered before the deadline. Among these studies, the manually
set deadline is an important parameter that affects the algo-
rithms’ performance. Flow time [40], [41], [4] is a commonly
used objective for improving the rider satisfaction.

However, due to limitations in the processing framework,
studies on ridesharing provide group results to riders either
immediately or in mini-batches, without taking into account
the response time. In this paper, we propose a new opti-
mization objective for the METRS problem that balances the
response time and detour time to improve riders’ satisfaction.
Different from existing processing frameworks, we propose
a novel order pooling management algorithm to handle the
balance problem effectively and efficiently.

IX. CONCLUSION

In this paper, we study the Minimal Extra Time RideSharing
(METRS) problem in which orders arrive dynamically, and
the platform needs to group them and assign workers to
serve the groups as many as possible while maximizing rider
satisfaction. We prove that the METRS problem is NP-hard.
To address this challenge, we propose an efficient framework
WATTER. It utilizes order pooling management algorithm to
allow riders’ orders to wait in a temporal shareability graph-
based order pool until they can be grouped effectively. We
also devise an average extra time threshold-based grouping
strategy that determines when to dispatch the orders in the
pool. To adapt to different spatiotemporal environments of
orders, we model the decision process as a Markov Decision
Process (MDP) and use a reinforcement learning model to
solve it. Through extensive experiments on three real dataset,
we demonstrate the efficiency and effectiveness of WATTER.

X. ACKNOWLEDGMENT

Peng Cheng’s work is supported by the National Natural
Science Foundation of China under Grant No. 62102149.
Libin Zheng is supported by the National Natural Sci-
ence Foundation of China No. 62102463 and the Natural
Science Foundation of Guangdong Province of China No.
2022A1515011135. Lei Chen’s work is partially supported by
National Key Research and Development Program of China
Grant No. 2023YFF0725100, National Science Foundation
of China (NSFC) under Grant No. U22B2060, the Hong
Kong RGC GRF Project 16213620, RIF Project R6020-19,
AOE Project AoE/E-603/18, Theme-based project TRS T41-
603/20R, CRF Project C2004-21G, Hong Kong ITC ITF
grants MHX/078/21 and PRP/004/22FX, Microsoft Research
Asia Collaborative Research Grant and HKUST-Webank joint
research lab grants. Xuemin Lin is supported by NSFC
U2241211, NSFC U20B2046, and 23H020101910. Corre-
sponding author: Peng Cheng.

[1

—

[2

—

[3

—

[5

=

[6]

[7]

[8

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

P. Cheng, J. Jin, L. Chen, X. Lin, and L. Zheng, “A queueing-theoretic
framework for vehicle dispatching in dynamic car-hailing,” Proc. VLDB
Endow., vol. 14, p. 2177-2189, jul 2021.

Y. Zeng, Y. Tong, Y. Song, and L. Chen, “The simpler the better:
An indexing approach for shared-route planning queries,” Proc. VLDB
Endow., vol. 13, p. 3517-3530, oct 2020.

T. Wang, H. Luo, Z. Bao, and L. Duan, “Dynamic ridesharing with mini-
mal regret: Towards an enhanced engagement among three stakeholders,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1-1, 2022.
Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li, “An efficient
insertion operator in dynamic ridesharing services,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pp. 1022-1033,
2019.

Z. Liu, Z. Gong, J. Li, and K. Wu, “Mobility-aware dynamic taxi
ridesharing,” in 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pp. 961-972, 2020.

M. Haliem, G. Mani, V. Aggarwal, and B. Bhargava, “A distributed
model-free ride-sharing approach for joint matching, pricing, and dis-
patching using deep reinforcement learning,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 12, pp. 7931-7942, 2021.
D. O. Santos and E. C. Xavier, “Dynamic taxi and ridesharing: A
framework and heuristics for the optimization problem,” in Twenty-third
international joint conference on artificial intelligence, 2013.

P. Cheng, H. Xin, and L. Chen, “Utility-aware ridesharing on road
networks,” in Proceedings of the 2017 ACM International Conference
on Management of Data, pp. 1197-1210, ACM, 2017.

Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” Proc. VLDB Endow.,
vol. 11, p. 1633-1646, jul 2018.

J. Wang, P. Cheng, L. Zheng, L. Chen, and W. Zhang, “Online
ridesharing with meeting points,” vol. 15, p. 3963-3975, sep 2022.

Y. Huang, F. Bastani, R. Jin, and X. S. Wang, “Large scale real-time
ridesharing with service guarantee on road networks,” Proc. VLDB
Endow., vol. 7, p. 2017-2028, oct 2014.

X. Bei and S. Zhang, “Algorithms for trip-vehicle assignment in ride-
sharing,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32, 2018.

A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal, “Deeppool: Distributed
model-free algorithm for ride-sharing using deep reinforcement learn-
ing,” IEEE Transactions on Intelligent Transportation Systems, vol. 20,
no. 12, pp. 4714-4727, 2019.

S. Shah, M. Lowalekar, and P. Varakantham, “Neural approximate
dynamic programming for on-demand ride-pooling,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 507-515, Apr.
2020.

X. Tang, F. Zhang, Z. Qin, Y. Wang, D. Shi, B. Song, Y. Tong, H. Zhu,
and J. Ye, “Value function is all you need: A unified learning framework
for ride hailing platforms,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 3605-3615,
2021.

Z. Xu, Z. Li, Q. Guan, D. Zhang, Q. Li, J. Nan, C. Liu, W. Bian, and
J. Ye, “Large-scale order dispatch in on-demand ride-hailing platforms:
A learning and planning approach,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 905-913, 2018.

X. Bei and S. Zhang, “Algorithms for trip-vehicle assignment in ride-
sharing,” in AAAI Conference on Artificial Intelligence, 2018.

C. Zhang, Y. Zhang, W. Zhang, L. Qin, and J. Yang, “Efficient maximal
spatial clique enumeration,” in 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pp. 878-889, 2019.

Y. Chen and L. Wang, “P-ride: A shareability prediction based frame-
work in ridesharing,” Electronics, vol. 11, no. 7, 2022.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
(30]
(31]
[32]

[33]

[34]

[35]

[36]

(371

(38]

(39]

[40]

[41]

H. Wu, Y. Chen, L. Wang, and G. Ma, “E-ride: An adaptive event-driven
windowed matching framework in ridesharing,” IEEE Access, vol. 10,
pp. 4379943811, 2022.

Z. Yuan, Y. Peng, P. Cheng, L. Han, X. Lin, L. Chen, and W. Zhang,
“Efficient k —clique listing with set intersection speedup,” in 2022 I[EEE
38th International Conference on Data Engineering (ICDE), pp. 1955—
1968, 2022.

X. Zhong, J. Jin, P. Cheng, W. Ni, L. Zheng, L. Chen, and X. Lin,
“Wait to be faster: a smart pooling framework for dynamic ridesharing,”
arXiv:2403.11099 [cs.DB], 2024.

J. Ke, F. Xiao, H. Yang, and J. Ye, “Learning to delay in ride-sourcing
systems: A multi-agent deep reinforcement learning framework,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 5,
pp. 2280-2292, 2022.

C. Rasmussen, “The infinite gaussian mixture model,” in Advances
in Neural Information Processing Systems (S. Solla, T. Leen, and
K. Miiller, eds.), vol. 12, MIT Press, 1999.

G. Xuan, W. Zhang, and P. Chai, “Em algorithms of gaussian mixture
model and hidden markov model,” in Proceedings 2001 International
Conference on Image Processing (Cat. No.0I1CH37205), vol. 1, pp. 145—
148 vol.1, 2001.

M. L. Puterman, “Markov decision processes,” Handbooks in operations
research and management science, vol. 2, pp. 331-434, 1990.

J. Jin, P. Cheng, L. Chen, X. Lin, and W. Zhang, “Gridtuner: Rein-
vestigate grid size selection for spatiotemporal prediction models,” in
2022 IEEE 38th International Conference on Data Engineering (ICDE),
pp. 1193-1205, 2022.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
pp. 279-292, 1992.

H. Hasselt, “Double g-learning,” Advances in neural information pro-
cessing systems, vol. 23, 2010.

H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double g-learning,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, p. 2094-2100, AAAI Press, 2016.
“[online] TLC Trip Record Data..” https://www.nyc.gov/site/tlc/about/
tlc-trip-record-data.page.

“[online] Didi Chuxing..” http://www.didichuxing.com/.

J. Wang, P. Cheng, L. Zheng, C. Feng, L. Chen, X. Lin, and Z. Wang,
“Demand-aware route planning for shared mobility services,” Proc.
VLDB Endow., vol. 13, p. 979-991, mar 2020.

Z. Chen, P. Cheng, Y. Zeng, and L. Chen, “Minimizing maximum
delay of task assignment in spatial crowdsourcing,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pp. 1454—1465,
2019.

S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in 2013 IEEE 29th International Conference on
Data Engineering (ICDE), pp. 410421, 2013.

L. Zheng, L. Chen, and J. Ye, “Order dispatch in price-aware rideshar-
ing,” Proceedings of the VLDB Endowment, vol. 11, no. 8, pp. 853-865,
2018.

L. Zheng, P. Cheng, and L. Chen, “Auction-based order dispatch and
pricing in ridesharing,” in 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pp. 1034-1045, IEEE, 2019.

X. Li, Y. Zhao, X. Zhou, and K. Zheng, “Consensus-based group task
assignment with social impact in spatial crowdsourcing,” Data Science
and Engineering, vol. 5, no. 4, pp. 375-390, 2020.

L. Chen, Q. Zhong, X. Xiao, Y. Gao, P. Jin, and C. S. Jensen, “Price-
and-time-aware dynamic ridesharing,” in 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pp. 1061-1072, 2018.

M. Firat and G. J. Woeginger, “Analysis of the dial-a-ride problem of
hunsaker and savelsbergh,” Operations Research Letters, vol. 39, no. 1,
pp. 32-35, 2011.

L. Héme, “An adaptive insertion algorithm for the single-vehicle dial-a-
ride problem with narrow time windows,” European Journal of Opera-
tional Research, vol. 209, no. 1, pp. 11-22, 2011.

