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Abstract—Ridesharing plays a more and more important role
in modern transport. In this paper, we propose solutions for
the bonus-offering scenario of ridesharing platforms (service
providers). When vehicles are in shortage, requesters are allowed
to offer bonus so that their orders can get prioritized in the
dispatch process. To enable self-motivated bonus bidding of
requesters, we devise an auction mechanism, where requesters
are supposed to submit their bids truthfully and the platform
conducts order dispatch and pricing. Our goal is to maximize
the overall utility of the auction, while ensuring desirable auction
properties such as truthfulness and individual rationality. To
realize that, we propose a greedy and a ranking approach
for order dispatch and their corresponding pricing strategies.
Extensive experiments on real data suggest that the ranking
approach is both effective and efficient.

Index Terms—ridesharing, car-hailing, auction, order dispatch

I. INTRODUCTION

Ridesharing has gained great popularity over the past few

years and becomes more and more common in the transporta-

tion market. In Didi Chuxing1, the largest ridesharing service

provider in China, the number of ridesharing orders reaches

2.4 million per day. Besides, among car-hailing service users,

more than half of them are willing to share their rides [1].

Vehicle shortage is not uncommon in popular ridesharing

platforms like Didi Chuxing and Uber2. For example, it can

happen during peak ordering times. The shortage of vehicle

disables the platform from dispatching all orders immediately,

and some requesters would have to wait if their orders are

pended. This can further lead to cancellation of orders. Ac-

cording to [2], the order cancellation rate in Didi Chuxing can

be more than 20%. In practice, requesters who are anxious

and not cost-sensitive, may wish to pay more to get dispatch

priority. Therefore, an user interface can be desired by such

requesters to announce their bonus offers. With such an

interface, the platform can also make more earnings from

requesters’ mark-up.

In response to the aforementioned scenario, in this work, we

propose an auction-based order dispatch and pricing mecha-

nism for ridesharing platforms. In this auction mechanism,

the requesters (riders) act as buyers. They submit origins &

destinations and bids to the platform server. With bids, the

∗Peng Cheng is the corresponding author.
1https://www.didiglobal.com/
2https://www.uber.com

requesters claim the amount of money they would like to pay

to take the service. The platform acts as the auctioneer, selling

the shard-rides to requesters. With respect to their bids, the

platform computes a dispatch, and decides the final payments

of dispatched requesters.

Use case 1. In Didi Chuxing, during peak ordering periods,
there is a bonus interface. In this interface, requesters would
be asked to pay some bonus if they wish to prioritize their
orders. In the current practice, the requesters decide whether
to pay the bonus set by the platform. The problem lies in
that the platform sets the bonus amount without knowing
requesters’ valuation in mind. Suppose that for a requester rj ,
his valuation of the order prioritization service is zj , and the
bonus amount set by the platform is y. If y > zj , the requester
would not offer the bonus because it exceeds his/her valuation,
which leads to a monetary loss as zj . If zj > y, the requester
offers bonus y, but still cause a monetary loss as zj − y.
This bonus interface can be made more self-motivated and
flexible by applying our auction mechanism, where requesters
can report their valuation as bids. Each requester can claim
his/her own bonus offer instead of simply answering a yes-or-
no charge question. Receiving requesters’ orders and bids, the
platform computes a dispatch where orders with higher bonus
should get higher priority. By guaranteeing some properties of
the auction mechanism, requesters are supposed to offer bids
exactly as zj’s, which would not cause monetary loss.

To the best of our knowledge, existing works of ridesharing

have not yet addressed the aforementioned scenario. Most

existing works focus on order dispatch [3]–[11], with the

optimization objective to minimize the overall travel distance.

Pricing the dispatched orders is not discussed in these works.

Fewer research works [12]–[14] have considered the order

pricing issue. For example, [12] suggests dividing the travel

cost of the shared trip evenly among the collaborative riders. In

these works, however, the requesters provide no information

on their desired payments. They have no control over their

payments, let alone deciding the bonus. Therefore, they cannot

be applied to the bonus scenario either.

To realize the auction mechanism, we propose order dis-

patch and pricing algorithms, which correspond to the winner

selection and the payment computation method respectively in

a classical auction [15]. Though auction mechanism has been

carefully studied in many fields [16]–[18], applying it to the
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TABLE I
SYMBOLS AND NOTATIONS

Symbol Description
V = {vi} Set of vehicles
R = {rj} Set of requesters.

̂R The set of dispatched requesters.
sj , ej Origin and destination of order rj .
revi Revenue of vi, i.e., platform’s payment to vi.
pli Travel plan of vi.

costi,j Cost of dispatching rj to vi.
ui,j Utility of dispatching rj to vi.
c̄ Capacity of vehicles.

Di, Ti Travel distance, travel time of vi.
αd Travel cost per unit travel distance.

m,n Number of requesters, number of vehicles.

ridesharing scenario has not yet been explored. The challenge

lies in the combinatorial complexity of order dispatch in

ridesharing, where different orders can be dispatched to the

same vehicle. Besides, when dispatching orders to a vehicle,

the utilities of different orders can affect one another depend-

ing on the closeness among their origins & destinations. In

spite of these challenges, our proposed algorithms manage to

maximize the overall utility of the auction, which is comprised

of requesters’ utility, drivers’ utility, and platform’s utility. The

algorithms are required to guarantee a set of auction proper-

ties, including truthfulness, individual rationality, profitability,

and computational efficiency, which are formally defined in

Section II-B. These desired properties ensure that the auction

would work well.

In summary, our contributions are listed as follows:

• We systematically introduce the auction mechanism, and

the associated problems in Section II.

• We propose the greedy-based order dispatch method and

its pricing strategy (GPri) in Section III.

• We propose the ranking-based order dispatch method and

its pricing strategy (DnW) in Section IV.

• We conduct experiments on real data to investigate the

performance of our proposed algorithms in Section V.

In addition to the contributions listed above, we discuss the

related work in Section VI and conclude the paper in Section

VII.

II. THE MECHANISM AND PROBLEM

In this section, we formally describe the auction-based

ridesharing mechanism. We firstly introduce the participating

entities of this mechanism in Section II-A. Then, in Section

II-B, we formulate the problems of order dispatch and pricing,

for which we need to devise solutions to implement the

mechanism. The important notations and symbols in the rest

of this paper are summarized in Table I.

A. Entity Models

Following most existing works [7], [8], [19]–[21], we adopt

the round-based order dispatch model for our mechanism. In

each round, the platform server operates on a set of pended

orders and online vehicles to optimize some objectives.

Fig. 1. A toy example.

Requesters act as buyers in the auction mechanism, submit-

ting bids to take the shared rides. Each requester has a value

in mind on how much the riding service is worth to him/her.

For a requester rj , we use valj to denote his/her valuation of

the service. Regarding valj , rj submits a bid, denoted as bidj ,

to the platform, claiming how much he/she would like to pay

to take the shared ride.

Definition 1 (Wasted time). The wasted time of a dispatched
requester rj is wtj + dtj , where wtj is his/her waiting time
during pick-up, and dtj is his/her detour time during delivery,
i.e., the actual travel time minus the least possible travel time.

Definition 2 (Requester). A requester rj is represented by a
tuple: < sj , ej , θj , valj , bidj >, where:

• sj and ej are the starting and ending geographical
locations of its trip;

• valj and bidj are rj’s valuation of the service and bid
to the platform respectively;

• θj is his/her maximum allowed amount of wasted time
during pick-up and delivery.

In this paper, the concepts of requester and order are used

interchangeably.

An example of three requesters r1∼3 is shown in Figure

1, where each node represents a location and all the edge

segments are of unit travel distance, requiring an amount

of travel time as te. Suppose v1 conducts its travel as

v1s1s3s2e2e3e1, where we omit the symbol ‘→’ between two

nodes for simplicity. Then, for r1, we have wt1 = te (the

travel time between v1 and s1), and dt1 = 2te, which equals

the delivery time in the travel (5te) minus the shortest delivery

time (3te for s1s2e2e1).

The platform acts as the seller in the mechanism, which

provides the riding service to the requesters. It also acts

as the auctioneer, who decides the winners among bidders

(requesters) and their payments. To dispatch requesters, the

platform maintains a set of vehicles.

Definition 3 (Vehicle). A vehicle vi is represented by a tuple
< li, pli >. li is its current location, and pli is its travel
plan, which consists of the starting and ending locations
of requesters dispatched to vi. Besides, each vehicle has a
capacity as c̄.

Definition 4 (Validity of travel plans.). The travel plan of
vi, pli, is valid if it does not violate any of the following
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constraints:
Precedence constraint. ∀rj assigned to vi, sj precedes ej in
pli.
Capacity constraint. ∀vi, at any stage, the difference between
numbers of finished pick-ups and drop-offs cannot exceed c̄.
Time constraint. For any rj assigned to vi, his/her amount of
wasted time cannot exceed θj , i.e., wtj + dtj ≤ θj .

An example of a vehicle can be found in Figure 1. Let us

suppose pl1 as v1s1s3s2e2e3e1. If θ1 = 2te, this would be

an invalid plan due to the violation of time constraint. This

is because the wasted time of r1 equals 3te, larger than θ1.

A valid solution is to dispatch r1 and r3 to v1 with pl1 as

v1s1s3e3e1.
The platform server dispatches requesters to the vehicles,

and makes payments to them. In this work, dispatching rj to

vi means inserting sj and ej into pli, without violations of

constraints in Definition 4. For payments to vehicles, without

loss of generality, we assume platform’s payment to a vehicle

is proportional to its travel distance after it picks up the first

rider. Let revi denote the revenue of vi, then we have

revi = βd ∗Di , (1)

where βd is the payment to vehicle per unit travel distance

and Di is the travel distance of vi during delivery.

B. Problem Formulation
In this section, we formulate the order dispatch problem and

the order pricing problem. These two problems correspond

to the winner selection problem and payment computation

problem respectively in a classical auction [15]. We firstly

define the utilities of the auction participants.

Definition 5 (Requester’s utility). According to [22], the utility
of a requester (bidder) in an auction, uj , is equal to

uj = (valj − payj) · xj ,

where xj equals 1 if the order of rj is dispatched, or 0
otherwise. payj is his/her final payment determined by the
platform. uj is the difference between rj’s valuation of service
and his/her final payment when xj = 1. Subsequently, the
utility of rj would be negative (or positive) when he/she pays
more (or less) than what he/she has expected.

Definition 6 (Platform’s utility). The utility of a platform in
an auction, Uplf equals

Uplf =
∑
rj∈ ̂R

payj −
∑
vi

revi ,

where R̂ denotes the set of dispatched requesters. Clearly the
platform’s utility is interpreted as its profit.

Remark. We use rj ∈ R̂ and xj = 1 interchangeably in this

paper to represent rj is dispatched.

Definition 7 (Driver’s utility). The utility of a driver (vehicle)
in an auction, ui equals

ui = revi − αdDi = (βd − αd)Di ,

where αd measures the labor & fuel cost per unit travel
distance.

Definition 8 (Overall utility). The utility of truthful auction
in ridesharing is defined as the sum of requesters’ utilities,
platform’s utility, and drivers’ utilities, i.e.,

Uauc =

⎛
⎝∑

rj∈ ̂R

(valj − payj)

⎞
⎠+

⎛
⎝∑

rj∈ ̂R

payj −
∑
vi

revi

⎞
⎠+

(∑
vi

(revi − αdDi)

)

=
∑
rj∈ ̂R

valj − αd

∑
vi

Di =
∑
rj∈ ̂R

bidj − αd

∑
vi

Di .

(2)

We have bidj = valj because of auction truthfulness. Truth-
fulness, which would be formally introduced later, suggests
that requesters’ best strategy (i.e., the one yielding maximum
utility) is to bid their valuations. It is generally assumed in
auction works [8], [15], [23] that bidders would bid their
valuations if auction truthfulness is satisfied. As what would
be presented later, the proposed algorithms satisfy truthfulness,
so we replace valj with bidj in Equation (2).

Remark. The defined overall utility in this work corresponds

to the social welfare of an auction system in existing works

[18], [23]–[26]. Pursuing the social welfare defends the ben-

efits of all auction participants, ensuring their willingness in

joining the auction. Therefore, maximizing the social welfare

is the optimization objective in many existing works [18],

[23]–[26].

Next we formally define the problems studied in this paper.

Definition 9 (Order dispatch problem). Given inputs of re-
quester set R and vehicle set V , the order dispatch problem in
auction-based ridesharing is to dispatch requesters rj ∈ R to
vehicles vi ∈ V such that the overall utility (Uauc in Definition
(8)) is maximized.

The successfully dispatched requesters are the winning

bidders in this auction. The losing (un-dispatched) requesters

in a round can increase their bids in the next dispatch round.

Remember that the system server operates in a round manner.

Requesters can make different bids in different rounds.

We formulate the problems on top of bidding behaviors

of requesters. However, requesters may not be able to bid

a price when they have no knowledge about the common

charge of their travel. Therefore, as shown in Use case 1, it

is also possible that the platform first displays a base price

to requester rj , on top of which rj bids the bonus he/she is

willing to pay. Note that the proposed algorithms still work

after this minor change.

From Equation (2), it can be found that Uauc is irrelevant

to requesters’ actual payments, i.e., payj’s. However, to make

sure that the auction mechanism functions well, we need to

properly determine requesters’ payments such that the auction

possesses a set of desired properties. These properties ensure

that I. requesters are willing to join the auction (individual
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rationality) and bid their valuations (truthfulness); II. the

platform is willing to join the auction (profitability); III. the

auction itself is efficient (computational efficiency).

Remark. Drivers’ willingness can be easily guaranteed by

making βd ≥ αd (see Definition 7), which ensures positive

utilities for them. Because βd ≥ αd is generally assured in

practice, we do not make it another property to be realized by

our algorithms.

Definition 10 (Order pricing problem). The order pricing
problem is to determine the payment for each dispatched re-
quester (i.e., payj’s) such that the auction mechanism satisfies
the following properties: truthfulness, individual rationality,
profitability and computational efficiency.

We define the aforementioned properties in the following.

Definition 11 (Truthfulness). An auction is truthful if the best
strategy (i.e., yields the maximum utility) of any requester is
to bid his/her valuation. That is, let payj and pay′j be the
payments of rj from bidding bidj = valj and bid′j �= valj ,
respectively. Then,

∀rj∀bid′j , (valj − payj) · xj ≥ (valj − pay′j) · x′j .
Definition 12 (Individual rationality). An auction is individ-
ually rational if the utility of any requester is non-negative,
i.e.,

∀rj , uj = (valj − payj) · xj ≥ 0 .

Note that the un-dispatched requesters are naturally individ-

ually rational as their utilities equal 0 (xj = 0).

Definition 13 (Profitability). An auction is profitable if the
utility of the platform is non-negative, i.e., Uplf ≥ 0.

Definition 14 (Computational efficiency). An auction is com-
putationally efficient if the process of winner selection and
payment computation can finish within polynomial time.

In auction-based ridesharing, Definition 14 means the time

complexities of the order dispatch and pricing algorithms are

polynomial w.r.t. the input size. However, as what would be

presented next, the order dispatch problem is NP-hard, which

makes it unrealistic to find the optimal dispatch solution while

keeping the auction efficient. Therefore, in the rest of this

paper, we propose approximation solutions for order dispatch

and devise corresponding pricing strategies.

NP-hardness of the problem. We prove the NP-hardness of

the order dispatch problem with a reduction from the 0-1
knapsack problem [27].

Theorem II.1. The order dispatch problem is NP-hard.

Proof sketch. Given a knapsack problem instance, we con-

struct an order dispatch problem instance with only one

vehicle. Besides, we map each item (in the knapsack problem)

to an order with the item utility and the weight as the utility

and the travel time respectively of delivering the order. Finally,

we transfer the budget constraint of the knapsack problem

to the wasted time constraint of the orders. Then, delivering

an order is analogous to selecting an item in the knapsack

problem instance. Please refer to our technical report3 for the

thorough proof.

III. THE GREEDY APPROACH

As shown in Section II, the order dispatch problem is NP-

hard. To find approximation solutions, we propose a greedy

dispatch method in Section III-B. With respect to the greedy

dispatch method, we propose a pricing method (GPri), aiming

to assure the desired auction properties. We conduct theoretical

analyses for these methods in Section III-C.

A. Preliminary of Approximation Methods

During order dispatch, we need to devise the travel plan for

a vehicle when there are more than one dispatched requester.

Given a set of pick-up and drop-off locations, travel route

planning aims to minimize the travel distance of visiting them

without violation of constraints in Definition 4.

In this paper, following [4], [10], [20], [21], [28], to dispatch

a new order, we insert its locations (pick-up & drop-off) into

a vehicle’s travel plan such that the increased travel distance

is minimized. As in [7], [9]–[11], [14], [20], [21], given two

adjacent locations in the plan, we measure the travel distance

regarding their shortest path. Then, the overall travel distance

equals the sum of adjacent distances. Note that measures

other than shortest path distance can also be adopted. For

example, the average historical travel distance between the

two locations. Our proposed algorithms still work and the

theoretical properties still apply. This is because the distances

among locations are the inputs to our algorithms, and we do

not use assumptions on them in our algorithm design and

analyses.

The size of the search space in this insertion-based algo-

rithm is linear to the length of plan, which is much more

efficient than enumerating all feasible plans. To dispatch an

order, the algorithm has a time complexity of O(c̄2q), where

O(q) is the time cost of a shortest path query. Note that this

insertion-based routing algorithm finds a suboptimal solution,

but it is a common practice [4], [10], [20], [21], [28] to save

computation complexity.

B. Requester Dispatch and Pricing

Greedy-based dispatch. Greedy-based order dispatch pro-

ceeds in two steps:

Initialization (Lines 2 ∼ 6). It traverses all requester-vehicle

pairs to find the valid dispatches, and calculates the corre-

sponding utilities, i.e., ui,j’s. Valid dispatch means that pli
remains valid after accommodating rj .

One-by-one dispatch (Lines 7 ∼ 16). It keeps dispatching

(rj∗, vi∗) which brings the maximum utility among the re-

maining valid dispatches. The utility ui,j is calculated as

follows:

ui,j = bidj − αd ∗ΔDi(rj) , (3)

3http://www.cse.ust.hk/%7Elzhengab/auctionRide.pdf
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Algorithm 1 Greedy-based order dispatch (Greedy)

Input: Requester set R, vehicle set V .

Output: Updated travel plans of vehicles.

1: pool← φ.

2: for all (rj , vi) ∈ R× V do
3: if (rj , vi) is valid then
4: Add pair (rj , vi) into pool and calculate ui,j .

5: end if
6: end for
7: while pool �= φ do
8: (rj∗, vi∗)← argmax(rj ,vi)∈pool ui,j .

9: If ui,j < 0: break.

10: Dispatch rj∗ to vi∗ and update pli∗.
11: ∀vi, if (rj∗, vi) ∈ pool, remove (rj∗, vi).
12: for all (rj , vi∗) ∈ pool do
13: Update ui∗,j if it remains valid.

14: Remove (rj , vi∗) from pool otherwise.

15: end for
16: end while

Algorithm 2 Order pricing for greedy dispatch (GPri).

Input: R, V and rh.

Output: Price for rh, payh.

1: R′ ← R \ rh; payh ← bidh.

2: Obtain R̂′ = {rjk} by running Greedy on V and R′.
3: h cost← min(ra=rh,vb)∈pooljz αd ∗ΔDb(rh).
4: if payh > h cost then
5: payh ← h cost.
6: end if
7: for all jk ∈ [j1, jz] do
8: If {(ra, vb) ∈ pooljk |ra is rh} = φ : Break.

9: h cost← min(ra=rh,vb)∈pooljk αd ∗ΔDb(rh).
10: payh ← min{payh, bidjk − costjk + h cost}.
11: end for
12: Return payh.

where ΔDi(rj) is the travel distance increase during delivery,

from inserting rj into vi’s travel plan.

Order pricing for greedy dispatch. In the following, we

devise an order pricing algorithm to decide the final payments

(prices) of the dispatched requesters. To price rh, as shown

in Algorithm 2, firstly a new dispatch requester set R̂′ is

obtained by running Greedy on V and R \ rh (Line 2). R̂′ is

represented in a sequence: rj1 ...rjk ...rjz , and rjk refers to the

k-th dispatched requester in Greedy. Let Vjk and pooljk denote

the vehicles and the valid requester-vehicle pairs respectively

before dispatch of rjk . Besides, let costjk denote the travel

cost of dispatching rjk .

The idea of Algorithm 2 is to compare rh to the dispatched

requesters in R̂′, and finds the minimum bid for rh to replace

one of them. When compared to rjk , firstly the dispatch cost

of rh at the moment right before dispatching rjk is calculated,

which is denoted by h cost (Line 9). Then, the minimum bid

for rh to replace rjk would yield that

bidh − h cost = bidjk − costjk .

Therefore, the minimum bid for rh to replace rjk is bidjk −
costjk + h cost (Line 10).

C. Theoretical Analysis

In this section, we analyze the approximation factor of

Greedy, and the auction properties achieved by Greedy & GPri

with Theorem III.1 and III.2 respectively.

Approximation factor of Greedy. To analyze the approxi-

mation effectiveness of Algorithm 1, we define an auxiliary

variable as follows:

β = max
vi,rj

bidj
u0
i,j

, (4)

where u0
i,j’s are the initial utilities before any dispatch, i.e.,

ui,j’s in Lines 2 ∼ 6 of Algorithm 1. Note that this variable

only depends on the inputs.

Theorem III.1. If β > 0, Algorithm 1 achieves an approxi-
mation factor of 1

n+nβ(c̄−1) .

Proof sketch. Let u0
max denote the maximum initial utility,

i.e., max
i,j

u0
i,j , and U∗ & UG denote the utilities of the optimal

solution and the greedy solution respectively. Obviously we

have u0
max ≤ UG and ∀rj , bidj ≤ βu0

max. Then, for each

vehicle in the optimal solution, we can bound its utility with

u0
max + β(c̄− 1)u0

max. Because there are n vehicles,

U∗ ≤ nu0
max + nβ(c̄− 1)u0

max ≤ (n+ nβ(c̄− 1))uG .

Please refer to our technical report for the thorough proof.

Theorem III.2. The auction mechanism implemented by Al-
gorithm 1 and 2 is computationally efficient, truthful and
individually rational.

Computational efficiency. We denote the number of re-

questers and vehicles as m and n respectively. For Algorithm

1, the time cost of the initialization phase (Lines 2 ∼ 6)

is O(mnc̄2q). For the dispatch phase, in a single loop, the

time costs are mainly charged by Line 8 (O(mn)) and Lines

12 ∼ 15 ( O(mc̄2q)) respectively. Because there are at most m
loops, the time cost of the dispatch phase is O (

m2(n+ c̄2q)
)
.

Overall, the time complexity of order dispatch (Algorithm

1) is O (
mnc̄2q +m2(n+ c̄2q)

)
. The time complexity of

Algorithm 2 is also O (
mnc̄2q +m2(n+ c̄2q)

)
, which results

from invoking Algorithm 1 at Line 2. The complexities of the

order dispatch and pricing algorithms are polynomial w.r.t. the

input size.

Truthfulness. We prove the truthfulness of the mechanism by

showing that it satisfies the properties of monotonicity and

critical payment. According to [22], an auction mechanism is

truthful if it satisfies conditions of monotonicity and critical
payment.
• Monotonicity. It states that if bidder rj wins the auc-

tion by bidding bidj , then he/she also wins by bidding
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bid′j ≥ bidj . This is obviously true in Algorithm 1. Given

the sequence of dispatched requesters {rj1 ...rjk ...rjz},
there are two possible cases for rjk to bid bid′jk ≥ bidjk .

In the first case, rjk is dispatched in an earlier step,

replacing rjh where h < k. In the second case, requesters

dispatched before the k-th step are not replaced by rjk .

As a result, rjk is still dispatched at the k-th step.

• Critical payment. It states that each bidder pays the crit-

ical value. That is, requester rh would not be dispatched

if he/she bids bid′h < payh. In algorithm 2, payh is set

to the minimum among the bid values of rh to replace a

dispatched requester in R̂′. Therefore, payh is the critical

bid value of rh.

Individual rationality. Algorithm 2 (Lines 1 and 10) ensures

that payh ≤ bidh. As truthfulness of the auction mechanism

is guaranteed, we have valh − payh = bidh − payh ≥ 0.

Therefore, the mechanism is individually rational.

IV. THE RANKING APPROACH

Though the greedy winner selection principle is shown

to be effective in existing works [16]–[18], it may not be

good for the studied ridesharing problem because of the order

dispatch complexity. Ridesharing orders affect one another;

their aggregated utility to a vehicle is not simply the sum

of their individual utilities. Greedy dispatches orders one by

one, locally optimizing each order without considering others.

Thus, it is less likely to obtain a globally good dispatch

solution. In this section, we propose another algorithm which

firstly packs the orders globally, and then dispatches the order

packs w.r.t. their utility rankings. Compared with Greedy, it

proceeds with the order packs, and thus has a long-sighted

view in terms of orders’ combination.
We introduce the ranking-based order dispatch and pricing

algorithm in Section IV-A. Then, we perform corresponding

theoretical analysis in Section IV-B.

A. Ranking-based Order Dispatch and Pricing

Algorithm 3 Ranking-based order dispatch (Rank)

Input: Requester set R, vehicle set V .

Output: Updated travel plans of vehicles.

1: I. Pack generation.
2: for all rj ∈ R do
3: vrj ← the nearest vehicle of rj in V .

4: end for
5: for all rj ∈ R do
6: packj ← argmax

R′⊂R ,rj∈R′ ,‖R′‖≤c̄

U(dispatch R′).

7: end for
8: II. Pack dispatch.
9: Rank ← Rank packj’s according to their utilities.

10: while Rank �= φ do
11: packj∗ ← the first pack in Rank.

12: Dispatch packj∗ to its vehicle vpackj∗ .

13: Remove packs in conflict with packj∗ from Rank.

14: end while

1) Order Dispatch: As shown in Algorithm 3, the dispatch

algorithm contains two phases. Phase I in Algorithm 3 is to

generate packs, and Phase II is to dispatch the packs.

I. Pack generation (Lines 2 ∼ 7). Firstly, for each rj , we find

its nearest vehicle, vrj , in V (Lines 2 ∼ 4). Then, for each rj ,

we find the optimal pack which contains rj and has at most

c̄ requesters, such that dispatching this pack to one of their

nearest vehicles yields the maximum utility (Lines 5 ∼ 7).

U(·) in Line 6 refers to the maximum utility of dispatching

requesters to one of their vehicles. Note that the dispatch of a

pack of requesters is conducted w.r.t. their optimal sequence.

The time cost of Lines 2 ∼ 4 is O(mnq). For Lines 5 ∼ 7,

there are totally mc̄ packs explored. To calculate the utility of

a pack, it explores c̄! orderings of the requesters, where each

ordering costs O(c̄3q) to compute the travel cost. Therefore,

the time cost of Lines 5 ∼ 7 is O(c̄!mc̄c̄3q). Because generally

c̄!mc̄c̄3q > mnq, the time complexity of pack generation is

O(c̄!mc̄c̄3q).
II. Pack dispatch (Lines 9 ∼ 14). The packs are ranked

in descending order of their utilities at Line 6. Then, they

are dispatched in the order of their rankings. The algorithm

firstly retrieves the pack with the highest ranking, packj∗,
among the remaining packs. Then, it dispatches packj∗ to its

vehicle vpackj∗ . Finally, it removes the remaining packs whose

requesters or vehicles are occupied by packj∗. That is,

∀packj ∈ Rank , if packj∗ ∩ packj �= φ or vpackj = vpackj∗ ,

remove packj from Rank .

The pack dispatch process terminates when Rank becomes

empty.

There are at most m packs to be dispatched, and for each

dispatch, at most m packs can be removed. Therefore, the time

cost of pack dispatch is O(m2).
Time complexity. The time complexity of pack generation and

dispatch are O(c̄!mc̄c̄3q) and O(m2) respectively. Because

c̄ ≥ 2 in ridesharing, the overall time complexity of ranking-

based order dispatch is O(c̄!mc̄c̄3q).
2) Order Pricing: Given a dispatched requester, rh ∈ R̂,

we denote the set of packs containing rh as Sh, i.e.,

Sh = {packj |rh ∈ packj , j = 1...m},
where packj’s refer to the packs found at Lines 5 ∼ 7 in

Algorithm 3. To ensure truthfulness, we price rh with its

critical payment, i.e., the smallest payh (payh ≤ bidh) such

that when bidh = payh, one of packs in Sh would still

be dispatched. For ease of presentation, let bid0h denote the

original bid of rh in the input. bidh would be used as a variable

in our analysis. The difficulty of pricing orders dispatched by

Rank lies in the following two aspects.

I. Unlike Greedy where each order acts as a single unit to

be dispatched, in ranking-based dispatch, the dispatch unit is

a pack. Each requester can be included in multiple packs. The

utility of a pack equals∑
rl∈pack

bidl − costpack , (5)
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where costpack denotes the cost of delivering requesters in the

pack. For packj ∈ Sh, its utility is linearly dependent on bidh.

We denote the smallest bid of rh for packj to be dispatched as

rh’s critical bid for packj . Then, payh should be the minimum

among rh’s critical bids for packs in Sh. That is,

payh = min
packj∈Sh

criticalBidh(packj) . (6)

II. Algorithm 3 proceeds w.r.t. the ranking (i.e., Rank),

however, unlike Greedy where the dispatch units (i..e, re-

questers) are fixed, the packs in Rank can change regarding

different bidh’s. When bidh decreases from bid0h, for packj ∈
Sh, it may not be the optimal pack of rj anymore due to its

decrease in utility. For example, let the pack of r1, pack1,

be one of the packs in Sh, and pack1 = Pa = {r1, r2, rh}.
There is another pack Pb = {r1, r4, r6}, and rh �= r6. Let

ΔUab = U(Pa) − U(Pb). If bidh is decreased from bid0h by

more than ΔUab, Pb would be the optimal pack of r1, pack1,

in replace of Pa. This uncertainty of Rank makes it hard to

analyze rh’s critical bids for packs in Sh, because packs in

Rank may change over the change of bidh.

Before we introduce our pricing approach, we first describe

Lemma IV.1. Given packj ∈ Sh, we let p0j denote its original

instance which includes rh, when bidh = bid0h. Besides, let p′j
denote the pack with the largest utility among packs including

rj and excluding rh. Let f(packj) denote the smallest bid

of rh for p0j to remain the optimal pack of rj . Lemma IV.1

indicates that depending on the value of bidh, there are only

two possible instances of packj , i.e., p0j and p′j .

Lemma IV.1. When bidh ≥ f(packj) , packj = p0j , otherwise
packj = p′j .

Proof. Let p′′ be any pack which satisfies that rh ∈ p′′ and

rj ∈ p′′. From Equation (5), it can be found that a change of

bidh, Δbidh, incurs exactly the utility change of Δbidh for

all packs including rh. In other words, the value of bidh does

not affect the ranking among p0j and p′′. Therefore, when bidh
is small enough such that p0j is not optimal for rj anymore,

the pack to replace p0j must be the one which has the largest

utility among packs excluding rh, i.e., p′j .

In the following, we propose the Divide-and-Walk (DnW)

approach to find payh. The idea is to firstly divide the

domain of bidh into intervals, according to the pre-computed

f(packj)’s of packs in Sh. Then, it searches payh interval-

by-interval. For ease of presentation, we denote f(packj)’s as

bjk ’s in ascending order of their values. That is, bjk denotes

the k-th smallest f(packj), with the corresponding pack repre-

sented as packjk . As shown in Figure 2, each bjk on the axis

indicates the instance change of packjk . Subsequently each

interval of bidh, [bjk , bjk+1
), indicates a particular instance set

of packs in Sh. In other words, each interval yields a particular

instance of Rank. The DnW approach finds payh by exploring

these intervals in ascending order.

As shown in Algorithm 4, the inputs are Rank, which is

the ranking of packs obtained at Line 9 in Algorithm 3, and

Algorithm 4 The Divide-and-Walk approach (DnW)

Input: Rank, rh, bid0h.

Output: Price for rh, payh.

1: Sh ← {packj |packj ∈ Rank, rh ∈ packj}.
2: bj ← f(packj) for packj ∈ Sh.

3: bj1 ...bjK ← sort bj’s in ascending order.

4: payh ← bid0h.

5: for all k = 1...K do
6: packja ← p0ja if a ≤ k else p′ja for packja in Sh.

7: Rank′ ← the ranking w.r.t. the updated packja ’s.

8: for all a = 1...k do
9: bidah ← smallest bid to dispatch packja by Alg. 3.

10: bidah ← bjk if bidah < bjk .

11: if bidah < bjk+1
then

12: payh ← min{payh, bidah}.
13: end if
14: end for
15: If payh �= bid0h : Break.

16: end for
17: return payh.

Fig. 2. The Divide-and-Walk (DnW) approach.

bid0h which is the original bid of rh. DnW first finds Sh,

and sorts the packs w.r.t. their bj’s (Lines 1 ∼ 3). Then

it starts searching the critical bid of rh from [bj1 , bj2) to

[bjK ,+∞). In the for loop (Lines 5 ∼ 16), the variable

k indicates the interval [bjk , bjk+1
). Subsequently, for packja

where a ≤ k, their instances should be p0ja , i.e., the original

instances that contain rh (Line 6). Otherwise, their instances

should be p′ja . By sorting these updated packja ’s together

with packs in Rank \ Sh, we obtain a new ranking, Rank’

(Line 7). In Rank’, rh would be dispatched if one of packs in

{packja |a ≤ k, packja ∈ Sh} is dispatched. For each of them,

we find rh’s smallest bid for it to be successfully dispatched

by Algorithm 3 (Lines 8 ∼ 9). This can be done in a similar

manner as Algorithm 2. The found bid value, bidah, would be

set to bjk if it falls behind [bjk , bjk+1
) (Line 10). Finally, if the

final value of bidah falls inside the interval [bjk , bjk+1
) and is

smaller than the current minimum bid payh, payh would be

set to bidah (Lines 11 ∼ 13). After it finishes the exploration

of one interval, the for loop can be terminated if payh has

been updated (Line 15). This is because the bids found in

later intervals must be larger than the current one. Note that

the intervals are explored in strictly ascending order.

Lemma IV.2 (Correctness of Algorithm 4). Algorithm 4 finds
exactly the critical payment of rh.
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It is not hard to understand the lemma as Algorithm 4 searches

the critical payment in the ascending order of intervals. Please

refer to our technical report for the formal proof.
Time complexity. The time cost of the initialization at Lines

1 ∼ 4 is O(m logm), mainly charged by the sorting. In one

loop of the for clause, constructing Rank’ at Lines 6 ∼ 7 takes

O(m logm) time. Besides, the sub-loop to find the critical bids

of packs at Lines 8 ∼ 14 takes O(m2) time. Because there

are at most m loops of the for clause, its time cost is up to

O(m2(logm +m)) → O(m3). Overall, the time complexity

of Algorithm 4 is O(m3).

B. Theoretical Analysis
In this section, we analyze the approximation factor of

Rank, and the auction properties achieved by Rank & DnW

with Theorem IV.1 and IV.2 respectively.

Theorem IV.1. Alg. 3 achieves an approximation factor of 1
m .

Proof sketch. The utility sum of packs in Rank is the bound

of the utility of any dispatch solution. The utility of the

solution obtained by Algorithm 3 is at least 1
m of the utility

sum of Rank, which subsequently indicates it is at least 1
m

of the optimum. Please refer to our technical report for the

formal proof.

Theorem IV.2. The auction mechanism implemented by Al-
gorithm 3 and 4 is computationally efficient, truthful and
individually rational.

Computational efficiency. As analyzed in Section IV-A, the

time complexities of Algorithm 3 and 4 are O(c̄!mc̄c̄3q)
and O(m3) respectively. Obviously O(m3) is polynomial to

input size. For O(c̄!mc̄c̄3q), it can be rather large when c̄
is unbounded. However, in practical taxi-sharing platforms

like Didi Chuxing, the maximum number of requesters in a

vehicle is no larger than 3. Therefore, considering the practical

scenario where c̄ is often bounded by a small value like 3,

we have O(c̄!mc̄c̄3q) → O(m3q), which is polynomial to

m. Therefore, the implemented auction is computationally

efficient in the practical taxi-sharing scenario.
Truthfulness. As mentioned before, an auction mechanism is

truthful if its pricing strategy satisfies monotonicity and critical
payment. As shown in Lemma IV.2, Algorithm 4 prices a

requester with exactly its critical payment. In the following,

we show that Algorithm 4 is monotonic. Let payh be the price

of rh determined by Algorithm 4.

Lemma IV.3. If bidh ≥ payh, rh will be dispatched by Alg. 3.

Proof sketch. A bid higher than payh can only make rh
dispatched in an earlier step. Please refer to our technical

report for the formal proof.

Individual rationality. From Lines 4 and 12 of Algorithm

4, we know that payh ≤ bid0h. Because truthfulness is

guaranteed, bid0h = valh. Then,

∀rh ∈ R̂, uh = valh − payh = bid0h − payh ≥ 0 .

Thus, the auction mechanism is individually rational.

V. EXPERIMENTS

In this section, we run experiments to evaluate the proposed

methods. We first describe our experimental settings in Section

V-A. Then, we present the experimental results of dispatch

methods in Section V-B, and the results of pricing methods

in Section V-C. Besides, we present the results of increasing

requesters’ bids in Section V-D, and the scalability results in

Section V-E.

A. Experimental Setup

Our experiments are run on the historical order and vehicle

data of the ridesharing business in Didi Chuxing, in the urban

area of Beijing (the area within the 5th Ring Road whose

size is 29.7 × 29.5 km2) and during the time period of 7 :
00 ∼ 7 : 30 am of a normal weekday. We target the orders

whose starting and ending coordinates both fall in the area,

and the vehicles whose online locations fall in the area. 7 :
00 ∼ 7 : 30 am is one of the busiest periods in a day. The

number of orders is around 5000, and the number of vehicles

online is around 7000. Our algorithms conduct order dispatch

and pricing round by round. The time window of one round

would be varied in experiments.

Simulation setup. Every order is issued at the time as recorded

in the data, with specified origin and destination. Besides, in

the data, each order is associated with a price. This is the

upfront price determined by Didi Chuxing with respect to the

origin & destination, demand-supply condition, and etc. In our

experiment, this price is treated as requester’s valuation of the

service, i.e., valj . Because all the proposed methods guarantee

truthfulness, we have bidj = valj . During the simulation, if an

order is not dispatched in a round, it would be pended to the

next round. An order would be omitted if it has been pended

for more than 5 minutes. In practice, such orders can be asked

for higher bids to get priority. A vehicle is available during the

time when it is recorded as online in the historical data, and

becomes unavailable when it turns to offline. A newly online

vehicle would be created at the location as recorded in the data.

After that if it is not dispatched with orders, it would randomly

walk over the road network, otherwise it would move w.r.t. its

travel plan.

This work targets taxi-sharing services where the maximum

number of orders sharing a vehicle would not be too large in

practice. In Didi Chuxing, this number is three, which is also

the setting in our experiments.

The travel cost from dispatching orders to a vehicle is

computed w.r.t. the origin & destination of the orders and

the real-time location of the vehicle, using the route planning

method in Section III-A. The road network is fetched from

OpenStreetMap4, which is further preprocessed as in [21].

Control variables. As mentioned before, the algorithms oper-

ate round by round. We denote the time duration of one round

as trnd, and vary it with {5, 10, 15, 20} in seconds similar to

[21]. For αd, in taxi services of China, the charge of traveling

per kilometer normally falls between 2.0 and 3.0 yuan (yuan

4https://www.openstreetmap.org
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TABLE II
EXPERIMENTAL SETTINGS

Variables Values
trnd 5 s, 10 s, 15 s, 20 s
γ 1.2, 1.5, 1.8, 2.0
αd 2.5, 3.0, 3.5, 4.0

charge ratio 0, 0.1, 0.2, 0.3, 0.4

is the basic unit of the official currency of China). This charge

can be a bit higher when it comes to peak hours. Therefore,

we vary αd with values in {2.5, 3.0, 3.5, 4.0}. Finally, in

Definition 2, each requester rj specifies θj , which is his/her

maximum allowed amount of wasted time caused by waiting

and detour. In our experiment, θj is specified as follows:

θj = (γ − 1) ∗ t(sj , ej) ,
where t(sj , ej) denotes the shortest travel time between its

origin and destination. γ can be interpreted as the maximum

allowed ratio between a requester’s actual time cost and the

shortest possible time cost. γ can be equivalently interpreted as

the detour ratio in [21]. Similar to [21], γ is varied with values

in {1.2, 1.5, 1.8, 2.0}. The variable settings are summarized in

Table II, with the default values in bold.

Compared methods. We evaluate the dispatch and pricing

methods of Greedy and Rank in Section V-B and V-C respec-

tively.

For comparison with existing works [16]–[18], though their

studied problems and settings are different from ours, the

greedy-based winner selection principle is universal. Observ-

ing that the greedy-based method is shown to be effective in

their works, we adapt the greedy winner selection rule to our

problem (Alg. 1), develop the corresponding pricing method

(Alg. 2), and perform theoretical analysis (Section III-C). The

proposed Greedy algorithm in this paper is also the state-of-art

method in existing works.

The comparison to the optimal solution on a set of small-

scale data and the comparison to Greedy and Rank under the

non-auction setting can be found in our technical report5.

Evaluation metric. We evaluate the dispatch methods in

terms of their achieved utilities (defined in Eq. (2)) and

running times. Remember that the platform server dispatches

requesters in a round manner, so the running time of a dispatch

algorithm should not exceed the time duration of one round.

Subsequently, the duration of a round would be an important

reference to judge the efficiency of the dispatch methods.

For the pricing methods, i.e., GPri for Greedy and DnW

for Rank, we have proved that they guarantee individual

rationality (non-negative urj and UR). In contrast, for both

methods, we fail to prove the platform profitability (Definition

13), i.e., non-negative Uplf . Therefore, in the experiments, we

would investigate the obtained Uplf of the pricing methods.

B. Results of Dispatch Methods

In this section, we compare the order dispatch methods in

terms of their achieved overall utilities and running times.

5http://www.cse.ust.hk/%7Elzhengab/auctionRide.pdf
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Effect of trnd. The experimental results of varying trnd are

shown in Figure 3(a) and 3(b). It can be observed that the

overall utility of Rank is much higher than that of Greedy,

almost doubling it. The superiority of Rank over Greedy comes

from its enumeration of order packs. Let us suppose that there

are two requesters r1 & r2 and a vehicle v1, and dispatching

only one of them brings a negative amount of utility. However,

r1 and r2 have a long shared travel path, and as a result,

dispatching them together to v1 can bring positive utility. In

this case, Greedy fails to dispatch any requester. In contrast,

Rank can successfully pack r1 and r2 in its packing stage, and

then dispatch them to v1.

It can be found in Figure 3(b) that the running time of

Rank is smaller than that of Greedy, but grows faster than it

over increasing trnd. Remember that the time complexities of

Greedy and Rank areO(mnc̄2q) andO(c̄!mc̄c̄3q) respectively.

The time complexity of Rank is larger than that of Greedy,

which explains its faster growth in running times. Neverthe-

less, under different values of trnd, the running time of Rank

keeps smaller than it. In contrast, the running time of Greedy

can be larger than trnd when trnd = 5 s.

Effect of γ. The experimental results of varying γ are shown

in Figure 4(a) and Figure 4(b). The achieved utilities of Greedy

and Rank both generally go up over increasing γ. This is

reasonable because a large γ indicates a large amount of

allowed wasted time of requesters. The utility gap between

Rank and Greedy stays large over different values of γ, again

demonstrating Rank’s superiority.

The running time of Greedy stays stably around 12 s over

various γ’s. In contrast, Rank is more costly given a large γ.

However, both methods can finish within trnd.

Effect of αd. The experimental results of varying αd are

shown in Figure 5(a) and 5(b). In terms of achieved utility,

Rank is superior to Greedy except when αd = 2.5. However,
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their gap at αd = 2.5 is not large. Rank is more robust

and persistently achieves a competitive amount of utility over

various αd’s.

In Figure 5(b), it can be found that the running times of both

methods go up over increasing αd. This is because a large αd

results in few dispatched orders. As a result, the number of

pended orders in a round becomes large. The running time of

Rank grows more quickly than that of Greedy over increasing

αd, but remains acceptable.

C. Results of Pricing Methods

In this section, we compare the pricing methods of Greedy

and Rank, i.e., GPri and DnW. They are invoked to price orders

for Greedy and Rank respectively. Using purely these pricing

algorithms, our experiments show that the achieved platform

utilities can be negative. In pursuit of positive platform utility,

we additionally set up a dispatch fee for the platform. That is,

for rj with bidj , a ratio of bidj would be compulsorily taken

away by the platform, which can be regarded as its charge of

being the dispatch agent. We denote this charge ratio as CR.

Before the platform invokes the dispatch & pricing algorithms,

it firstly deducts requesters’ bids with the dispatch fee. The

new bids of requesters would be

bid′j = bidj − bidj ∗ CR .

These deducted bids would be the input to the algorithms. Note

that only dispatched requesters would be charged. The dispatch

fee bidj ∗CR would be returned back to requesters if they are

not dispatched. Besides, applying this dispatch fee would not

ruin the mechanism’s truthfulness, individual rationality and

computational efficiency. For both algorithms, the platform

profitability can be assured by setting CR ≥ 0.5. This is

because the dispatch cost of rj cannot exceed bid′j = 0.5∗bidj .
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Fig. 7. Results of increasing bids

Then even payj = 0, the pre-charged 0.5 ∗ bidj can cover the

cost.

The achieved utilities of varying CR are shown in Figure

6(a) and 6(b), where Uauc and Uplf represent the overall

utility achieved by Greedy or Rank, and the platform utility

determined by GPri or DnW respectively.

For Greedy and its pricing algorithm GPri, in Figure 6(a),

the platform utility obtained by GPri is negative in most of

cases (CR ≤ 0.3). Besides, in the only case when the platform

utility is positive (CR = 0.4), both the platform utility and

the overall utility are small.

For Rank and DnW, in Figure 6(b), the platform utility is

negative only when CR = 0. Generally the platform utility

is positive over positive CR’s. Furthermore, when CR = 0.2,

the platform utility is nearly half of the overall utility, which

is also comparatively large. We can assure positive platform

utility with CR = 0.5, however, it is suggested that setting

CR = 0.2 turns out the best utility results.

The running time results of GPri and DnW can be found

in our technical report. They keep smaller than 0.25 s, and

are omitted in this paper. Pricing individual requesters is

independent of one another, and in our implementation, we

use multiple threads where each one prices one requester. With

this speed-up, the pricing process is quite fast.

D. Results of Varying Bids

In this section, we increase the bids of requesters to investi-

gate its effects on the requester utilities and the order dispatch

rate.

In an auction, a bidder should be able to increase his/her

success rate by increasing the bid. We randomly select a

requester and investigate his/her dispatch results over different

bids, which are presented in Figure 7(a). The critical payment

and the service valuation of the requester are 25.4 and 32.7

yuan respectively (the unit yuan would be omitted in later

discussion for brevity). We can see that when the requester

makes a bid no less than 25.4, he/she would be dispatched with

a payment equaling 25.4, and his/her achieved utility is equal

to 32.7−25.4 = 7.3. In contrast, when his/her bid is less than

25.4, the requester would not be dispatched (payment = 0),

and the resultant utility is 0.

To investigate how the increase of bids affects the dispatch

rate of orders, we select the orders and vehicles from a 5-

minute period and run our dispatch algorithms upon them. For
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the un-dispatched orders, we increase their bids by 1 and re-

run our dispatch algorithms upon them. We repeat this process

until all the orders get dispatched. The results are shown in

Figure 7(b). It can be found that Rank achieves 100% dispatch

rate with the overall bid increase around 2000, which is much

less than that of Greedy (around 3000). Besides, under the

same amount of bid increase, Rank persistently achieves a

dispatch rate much larger than that of Greedy.

E. Results of Scalability

In this section, we synthetically generate various numbers of

orders and vehicles to test the scalability of dispatch methods.

We denote the number of orders/vehicles as N , and ranges

it with values {1000, 5000, 10, 000, 20, 000, 50, 000}. For

Rank, we conduct some optimization to save its time cost

when N ≥ 5000. Specifically, before its pack generation

phase (see Algorithm 3), we properly cluster the orders w.r.t.

their origins/destinations to form N
1000 order groups. Then, in

the pack generation phase, each order searches the optimal

pack within its group, whose size is expected to be around

1000. The shrink of the search space from N to around 1000
greatly reduces the computation cost. Besides, different order

groups are processed by different servers parallelly. The packs

generated from different groups are finally combined together

and processed by the pack dispatch phase. The experimental

results are presented in Figure 8. The results of Greedy at

N = 50, 000 are not reported because its running time is

unbearable.

Rank persistently achieves a larger amount of utility than

Greedy when N < 20, 000. Note that the utility difference is

not apparent in the figure because the Y-axis is in log-scale.

In fact, when N = 5000, the utilities of Greedy and Rank

are 3899 and 4504 respectively, whose ratio is 0.866. Their

difference is not significant after N = 20, 000 because the

orders are so dense that it is easy to form good combinations

for them.

For the running times, when N = 5000, both methods

cost hundreds of seconds. However, the running time of

Greedy is more than 1200 s at N = 10, 000, and approaches

5000 s when N reaches 20, 000. In contrast, even when N
reaches 50, 000, the running time of Rank remains hundreds of

seconds, which benefits from using different servers to process

the divided order groups in its pack generation phase.

Summary of experimental results. In summary, in terms

of the achieved overall utility, Rank is more effective than

Greedy. Besides, Rank & DnW can not only realize the

desired auction properties, but also bring a proper amount

of platform utility. Its advantage over Greedy comes from

packing the orders in advance, which offers a deeper insight to

its dispatch process. In terms of running times, both methods

are efficient enough regarding the real data. The scalability test

suggests that Rank is also able to process large-scale inputs,

by clustering the orders in the pack generation phase.

VI. RELATED WORK

The ridesharing problem. The dial-a-ride problem (DARP)

[3]–[6] can be seen as the offline version of the ridesharing

problem. Given a set of vehicles and riders with origin and

destination, DARP is to devise a routing solution such that

the overall travel distance of vehicles is minimized while

delivering all the riders.

The optimization goal is comparatively diverse in works

of ridesharing. Cheng et. al. [20] consider the social affinity

among riders. To offer a better riding experience, they manage

to maximize the affinity among riders sharing a vehicle. Alon-

somora et. al. [8] adopt a score function to linearly combine the

travel time delays and the number of un-served orders. They

construct a RTV graph which contains orders, order packs and

vehicles, based on which they solve the problem via integer

programming. Wang et. al. [19] assume that the requesters

make travel to take specific activities, based on which they

enable multiple destinations of a requester. They study how to

group the requesters under such a relaxed setting. Na et. al.

[7] formulate the ridesharing problem as a maximum weighted

bigraph matching problem, where each vehicle is allowed to

take at most one requester. Each vehicle has its original travel

plan, and the goal is to maximize the shared travel distance.

Qian et. al. [29] study the order grouping problem with the

setting that the grouped requesters would walk to a meeting

point so that the driver can save some travel cost during pick-

up.

Zheng et. al. [21] take the order prices into concern, and

aim to maximize the platform profit. The problem setting in

[21] is similar to the order dispatch problem in this work. The

greedy algorithm is shown to be competitive in [21], which

has been developed as a solution for the auction mechanism,

accompanied by a pricing method (GPri). In contrast, other

proposed algorithms in [21] are not brought for comparison,

because so far we are still not able to devise proper pricing

algorithms for them to meet the desired auction properties.

Yang et. al. [11] and Ma et. al. [10], [14] study the

ridesharing problem in an online setting. In this setting, the

platform server responds immediately to each order’s arrival,

and conducts dispatch for it whenever possible. For each order,

it finds the vehicle which owns the least amount of additional

travel distance. Chen et. al. [30] dispatch orders in an online

setting as well. It differs from [10], [11], [14] in that it finds

multiple candidate vehicles for each order.
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Foti et. al. [31] and Wolfson et. al. [32] study the fairness

issue among requesters in ridesharing. They aim to obtain a

grouping solution such that no requesters prefer one another

to their current groups.

The auction problem. Among existing auction works, [16]–

[18] are most close to us. Jin et. al. [18] propose an auction

mechanism for mobile crowd sensing, where both task re-

questers and workers make bids, and the platform determines

the winning requesters/workers and their prices/payments.

Wang et. al. [16] enable a worker (mobile device) to bid multi-

ple tasks, where different tasks are offered different bids. Yang

et. al. [17] propose an auction model for mobile phone sensing,

which differs from [16] in that each worker sets an overall

bid for a selected set of tasks. The platform selects workers

so that the overall utility is maximized. In aforementioned

works, the greedy-based winner selection principle is shown

to be effective. Thus, regarding this principle, we propose the

Greedy dispatch method, and devise its pricing method (GPri).

Besides, we propose another algorithm Rank & DnW, which

is shown to be more effective in our experiments.

In [9], for every newly arrived order, each vehicle locally

calculates the utility of serving this order, and bids it to the

platform. The platform then selects the vehicle which brings

the maximum amount of utility.

VII. CONCLUSION

In this paper, to enable self-motivated bonus offering of

requesters, we study the problem of auction-based ridesharing.

We devise an auction mechanism which enables requesters

to offer bids and platform to dispatch and price orders. We

propose two methods to implement the auction mechanism,

i.e., the greedy and the ranking based algorithms. Through

extensive experiments, the ranking-based algorithm is shown

to be both effective and efficient.
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