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Abstract—With the popularity of smart devices and the de-
velopment of high-speed wireless networks, the spatial crowd-
sourcing has attracted much attention from both academia
and industry (e.g., Uber and TaskRabbit). Specifically, a spatial
crowdsourcing platform assigns workers to location-based tasks
according to their current positions, then the workers need to
physically move to the specified locations to conduct the assigned
tasks. In this paper, we consider an important spatial crowdsourc-
ing problem, namely cooperation-aware spatial crowdsourcing
(CA-SC), where spatial tasks (e.g., collecting the Wi-Fi signal
strength in one building) are time-constrained and require more
than one worker to complete thus the cooperation among assigned
workers is essential to the result. Our CA-SC problem is to assign
workers to spatial tasks such that the overall cooperation quality
is maximized. We prove that the CA-SC problem is NP-hard
by reducing from the k-set packing problem, thus intractable.
To tackle the CA-SC problem, we propose task-priority greedy
(TPG) approach and game theoretic (GT) approach with two
optimization methods to quickly solve the CA-SC problem and
achieve high total cooperation quality scores. Through extensive
experiments, we demonstrate the efficiency and effectiveness of
our proposed approaches over both real and synthetic datasets.

Index Terms—Spatial Crowdsourcing, Game Theoretic Algo-
rithm, Task Assignment

I. INTRODUCTION

With the popularity of the smart devices and the develop-

ment of high-speed wireless networks, people nowadays can

easily participant in spatial tasks that are close to their current

locations through online services and then contribute to the

tasks in real world, such as taking photos/videos, cleaning

rooms, and moving heavy stuff. To support these activities,

a new framework, namely spatial crowdsourcing [11], is

proposed and attracts much attention from both academia

and industry (e.g., TaskRabbit [1]). Specifically, a spatial

crowdsourcing system assigns moving workers to spatial tasks

under the constraints of the locations, deadlines and capacities

[5], [6], [11], [22], [26], [27].

In spatial crowdsourcing, some tasks need more than one

worker to complete, such as moving heavy stuff, doing cater-

ing work for a wedding, and passing out leaflets at multiple

nearby locations to advertise a shop [14]. When workers

are assigned to such kind of tasks, they need to cooperate

and communicate with each other to avoid free riders and

accomplish the task well, then the relationship between the

workers may play a crucial role in affecting the quality of

(a) Locations of tasks and workers (b) Cooperation Relationships
Fig. 1. An Example of Cooperation-Aware Spatial Crowdsourcing Problem.

the work. Then reputation or monetary awards of workers

may also be affected by the cooperation quality. Good task

cooperation quality can benefit workers, requesters and the

platform. Existing studies [5], [11], [12], [22], however, have

not focused on the cooperation relationship of workers.

With the consideration of the cooperation among workers,

in this paper, we study an important problem in spatial crowd-

sourcing, namely cooperation-aware spatial crowdsourcing
(CA-SC), which assigns cooperation-aware moving workers
to spatial tasks to maximize the overall cooperation quality

revenue. We first illustrate the motivation of the CA-SC prob-

lem with an example of doing catering work for a wedding.

Example 1. In the example of cooperation-aware spatial
crowdsourcing problem shown in Figure 1, there are two
spatial tasks, t1 and t2, and four cooperation-aware workers,
w1 ∼ w4. The locations of the tasks and workers are shown in
Figure 1(a), where workers are represented by yellow triangles
and tasks are indicated with blue circles, and the dash circles
show the working areas of workers. Specifically, worker w2

can accept tasks t1 and t2 and worker w1 only prefers task
t1. Assume each task needs two workers to complete the job of
doing catering work for a wedding. In addition, based on the
historical cooperation records, we estimate the cooperation
qualities of worker pairs shown in Figure 1(b) with Equation
1, where each straight line indicates a cooperation relationship
between the connected two workers and the number close to
it denotes the cooperation quality of the two workers.

Given the information above, the crowdsourcing system
needs to assign each task with two workers under the working
areas constraints of workers with a goal of completing the
task with high quality. Since in spatial crowdsourcing, workers
need to physically move to the required location of the as-
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signed task, where they will cooperate with the other workers
assigned to the same task. In this example, if one worker loafs
on the job, the other worker will need to work more and feel
unfair, which may lead to a bad service quality. The system
needs to determine a group of workers for each task such
that they can cooperate well. In this example, we can assign
workers w1 and w2 to task t1, and workers w3 and w4 to task
t2 resulting in the total cooperation score of 0.2 (calculated
by Equation 3). However, we can achieve a better assignment
by dispatching workers w1 and w4 to task t1, and workers w2

and w3 to task t2, whose total cooperation quality score is 1.8
(obviously higher than 0.2).

In general, we handle CA-SC with a batch-based task

assignment process, which means the platform periodically

assigns the available workers to unfinished tasks. In this paper,

we first prove that CA-SC is NP-hard by reducing from the k-

set packing problem (k-SP) [29]. Thus, the CA-SC problem

is not tractable and very hard to achieve the optimal result

for problems with real world scales (e.g., hundreds of tasks

and thousands of workers). Existing studies [5], [6], [11],

[25], [33] of task assignment in spatial crowdsourcing do not

take the cooperation scores of workers into consideration, thus

cannot be used directly on our CA-SC problem. In this paper,

we propose one greedy based approach and one novel game

theoretic approach with two optimization methods to greedily

handle CA-SC in each batch process.

Specifically, we make the following contributions.
• We formally define the cooperation-aware spatial crowd-

sourcing (CA-SC) problem proved NP-hard in Section II.

• We propose task-priority greedy approach in Section IV.

• We propose one game theoretic approach with two opti-

mization methods in Section V.

• We conduct extensive experiments on real and synthetic

data sets, and show the efficiency and effectiveness of our

game theoretic approach in Section VI.
Section III introduces the batch-based framework of CA-

SC problem. Section VII reviews previous studies. Finally,

Section VIII concludes this paper.

II. PRELIMINARIES

Definition 1. (Cooperation-Aware Moving Workers) Let W =
{w1, w2, ..., wm} be a set of m cooperation-aware moving
workers. Each worker wi (1 ≤ i ≤ m) is located at a location
li having a moving speed of vi at timestamp ϕi, and specifies a
radius ri of his/her working area. Moreover, the system knows
the cooperation quality qi(wk) between worker wi and the
other worker wk.

Each worker wi comes to the spatial crowdsourcing system
at timestamp ϕi and reveals his/her location li to the system.
The worker may prefer to only accept the tasks within a
working area with a radius ri avoiding moving too much. Most
importantly, the platform knows the cooperation quality score
qi(wk) ∈ [0, 1] between worker wi and the other worker wk.
Intuitively, the cooperation quality score qi(wk) reflects how
good the two workers can work together. The higher qi(wk) is,
the better the service provided by the two workers is. Usually,
platforms allow task requesters to rate the results. Let Tik be a
set of tasks that workers wi and wk both contributed to. Then

the cooperation quality score qi(wk) between two workers wi
and wk can be estimated as:

qi(wk) = α · ω + (1− α) ·
∑

tj∈Tik
sj

|Tik| , (1)

where ω is a base cooperation quality (configured by the
platform, such as 0.5), sj ∈ [0, 1] is the rating score of task

tj and |Tik| is the number of tasks in Tik. In addition, α
is a parameter to reconcile the basic quality score and the

historical average quality score. The intuition of Equation 1

is that it reflects the balance of the historical performance

(e.g.,

∑
tj∈Tik

sj

|Tik| ) and the priori assumption (i.e., the average

cooperation quality between any two workers, such as ω).

Definition 2. (Spatial Tasks) Let T = {t1, t2, ..., tn} be a
set of spatial tasks. Each task tj (1 ≤ j ≤ n) is created in
the system at timestamp ϕj and requires a set of at most aj
workers at location lj before its deadline τj .

To guarantee tasks can be finished, at least B workers are
required for each task. Specifically, for task tj assigned with a
set Wj of workers, we define the cooperation quality revenue
Q(Wj) of the workers as:

Q(Wj) =

{
0, |Wj | < B∑

wi∈Wj

∑
wk∈Wj∧k �=i qi(wk)

min(|Wj |,aj)−1
, B ≤ |Wj | ≤ aj

(2)

where |Wj | indicates the number of workers in Wj . Note that,

when the number of the assigned workers exceeds the capacity

aj of task tj , we only consider a subset of aj workers with

the maximum overall cooperation quality. The reason is that

the requester needs to pay each worker and the total budget

to finish the task is limited, then limited workers are allowed.

For each worker wi ∈ Wj (here |Wj | ≥ B), his/her

average quality score can be calculated as qi(Wj) =∑
wk∈Wj∧k �=i qi(wk)

min(|Wj |,aj)−1 , which can be viewed as the expected

revenue from hiring worker wi. Then, the cooperation quality

revenue Q(Wj) can be treated as the expected qualified

revenue received by the requester from hiring Wj workers.

Definition 3. (Valid Worker-and-Task Pairs) For a set, W, of
m workers and a set, T, of n tasks, a valid worker-and-task
pair 〈wi, tj〉 indicates a pair of worker wi and task tj that: 1)
worker wi comes to the system after the task tj is created; 2)
the location lj of task tj is in the range of the working area
of worker wi; 3) the worker wi can arrive at the location lj
before the deadline of task tj .

For each valid worker-and-task pair 〈wi, tj〉, we need to

guarantee worker wi can arrive at the required location of

task tj , that is
d(li,lj)

vi
≤ τj −ϕ, where d(li, lj) is the distance

between wi and tj , vi is the speed of wi, τj is the deadline

of tj and ϕ is the current timestamp. Then, an assignment

A of a CA-SC instance is a set of valid worker-and-task

pairs satisfying the capacity constraint of tasks. Then, we can

formally define the cooperation-aware spatial crowdsourcing

(CA-SC) problem.

Definition 4. (CA-SC Problem) Given a set W of workers
and a set T of tasks, the CA-SC problem is to assign tasks
to workers such that:
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1) the capacity constraints are satisfied; and
2) the working area constraints of workers are satisfied; and
3) the deadline constraints of tasks are satisfied; and
4) the overall cooperation quality revenue of all the tasks in

T is maximized, which is:
Q(T) =

∑
tj∈T

Q(Wj) (3)

where Wj is a set of workers assigned to task tj and Q(Wj)
is their cooperation quality revenue defined in Equation 2.

Table I lists the commonly used symbols in this paper.

We prove that CA-SC is NP-hard by reducing from a well-

known NP-hard problem, k-set packing (k-SP) problem [29].

Theorem II.1. (Hardness of CA-SC) CA-SC is NP-hard.

Proof. We prove the theorem through a reduction from the k-

set packing problem (k-SP). A k-SP problem can be described

as follows: given a universe of elements U = {e1, e2, ..., e|U|},
a collection of subsets C = {C1, C2, ..., C|C|}, where Ci ⊆ U ,

and a number k. For each subset Ci, it is associated with a

weight w(Ci). The k-SP problem is to select some subsets

C∗ ⊆ C, satisfying that any two subsets Ci, Cj ∈ C∗ are

disjoint (e.g., Ci ∩ Cj = ∅) and the size of Ci ∈ C∗ is at

most k (e.g., |Ci| ≤ k), to maximize
∑

Ci∈C∗ w(Ci).
For a given k-SP instance, we can transform it to a CA-

SC instance within polynomial time as follows: each task

requires k workers to complete. We configure that each worker

can arrive at every task before its deadline. Next, for each

element ei, we create one worker wi. For each subset Cj , we

create one task tj and associate it with a set Wj of workers

such that ∀ei ∈ Cj , wi ∈ Wj and ∀ei /∈ Cj , wi /∈ Wj ,

and the cooperation quality of the workers in Wj equals to

w(Cj) (i.e., Q(Wj) = w(Cj)). In addition, we set B =
min(|Wj |), ∀tj ∈ T , which means every task tj can be

finished by its corresponding set Wj of workers. Then, for

this CA-SC instance, we want to select a set of tasks to

complete such that the overall cooperation quality score is

maximized, which is same to maximize the total weight of the

corresponding subsets in the original k-SP problem instance.

Given this polynomial-time mapping method, it is easy to

show that the k-SP problem instance can be solved if and only

if the transformed CA-SC problem can be solved.

This way, we reduce k-SP to the CA-SC problem. Since k-

SP is well known to be NP-hard [29], CA-SC is also NP-hard,

which completes our proof.
Due to the NP-hardness of our CA-SC problem, in the

next section, we propose a game theoretic approach with two

optimization methods to solve CA-SC.

III. FRAMEWORK FOR HANDLING THE CA-SC PROBLEM

In this section, we propose a batch-based framework as

shown in Algorithm 1, which iteratively assigns workers to

tasks for multiple batches. Specifically, for a batch starting at

timestamp ϕ, we first retrieve a set, Tϕ, of available tasks

and a set, Wϕ, of available workers (lines 2 - 3). Here,

available tasks Tϕ include the tasks that are not assigned with

enough workers during the last batch and the newly appeared

TABLE I
SYMBOLS AND DESCRIPTIONS

Symbol Description
wi a cooperation-aware worker
tj a spatial task
W a set of m cooperation-aware workers
T a set of n spatial tasks
qi(wk) the cooperation quality between worker wi and worker wk

vi the moving speed of worker wi

ri the radius of the working area of worker wi

aj the capacity of task tj
B the minimum # of required workers to finish a task tj
ϕi (ϕj) the timestamp when worker wi appears (task tj is created)

in the system
τj the deadline of task tj
Wj the set of workers assigned to task tj

Algorithm 1: Batch-based Framework

Input: A time interval Φ
Output: A set of worker-and-task assignments within the time

interval Φ

1 while current time ϕ is in Φ do
2 retrieve all the available spatial tasks to Tϕ

3 retrieve all the available workers to Wϕ

4 foreach wi ∈Wϕ do
5 obtain a set, Ti, of valid tasks for worker wi

6 use our task-priority greedy or game theoretic
approach to obtain a good assignment A

7 foreach 〈wi, tj〉 ∈ A do
8 inform worker wi to conduct task tj

tasks after the last batch. Moreover, available workers Wϕ

includes the workers that are not assigned with any tasks in

the last batch, the workers that have finished the previous

assigned tasks, and the new workers after the last batch. As

the tasks need workers to cooperate together, workers need

to arrive at the location of task and start to conduct the task

collaboratively. Each task needs a period of time to finish, then

for different tasks the finishing time should be different as the

requirement and the assigned workers are not same.

To obtain the valid tasks Ti for each worker wi, we can

utilize the spatial index (e.g., R-Tree [24]) to conduct a range

query with a range of ri and a center at the current location

li of wi, then we remove the tasks that the worker wi cannot

arrive at the required locations of them and only report the

tasks Ti that within the working area of worker wi and worker

wi can arrive at the require locations of the tasks (lines 4 - 5).

With the available tasks Tϕ, the available workers Wϕ and the

valid tasks Ti for each worker wi, we can apply our proposed

approaches, including task-priority greedy (TPG) and game
theoretic (GT) with optimization methods, to achieve a good

assignment A with a high total cooperation quality score (line

6). In the end of each iteration, for every pair 〈wi, tj〉 in A,

we inform the worker wi to conduct task tj (lines 7 - 8).

Specifically, TPG first greedily assigns the most suitable

B-worker set to each task with the most potential candidate

workers, then keeps choosing the “best” worker-and-task pair

with the maximum total cooperation quality increase, which
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Algorithm 2: Task-Priority Greedy Approach

Input: A set W(ϕ) of available workers and a set T(ϕ) of
tasks at timestamp ϕ

Output: An Assignment A for this timestamp ϕ

1 T← ∅
2 while T(ϕ) = ∅ do
3 foreach tj ∈ T(ϕ) do
4 find a set of B workers Wj,B with the highest

cooperation quality score for task tj

5 select the workers W ∗
B with the highest cooperation

quality score for the remaining tasks in T(ϕ)

6 if more than one task competes for W ∗
B then

7 assign W ∗
B to the task tj with the most potential

workers

8 else
9 assign W ∗

B to the task tj who owns it

10 A← A+ ∪wi∈W∗
B
{〈wi, tj〉}

11 W(ϕ) ←W(ϕ) −W ∗
B

12 T(ϕ) ← T(ϕ) − {tj}
13 T← T+ {tj}
14 T(ϕ) ← T

15 while T(ϕ) = ∅ and W(ϕ) = ∅ do
16 select a worker-and-task pair 〈wi, tj〉 with the highest

utility value from workers in W(ϕ) and tasks in T(ϕ)

17 A← A+ {〈wi, tj〉}
18 W(ϕ) = W(ϕ) − {wi}
19 if |Wj | = aj then
20 T(ϕ) = T(ϕ) − {tj}
21 return the assignment A of all the tasks

is local optimal and may be unfair for some workers as they

may have better choices if they are allowed to select tasks

by themselves. Furthermore, GT utilizes the best-response

strategy to iteratively adjust the “best” task for each worker

until a Nash equilibrium state is met, which means no single

worker can improve his/her cooperation quality score by

unilaterally switching to any other tasks when other workers

stay in the assigned tasks in the Nash equilibrium state.

The corresponding assignment of the Nash equilibrium state

usually has a high total cooperation quality score and is fair to

every worker, as each single worker is assigned with his/her

optimal strategy upon the other workers’ current choices.
Note that, the framework just greedily resolves the “current”

CA-SC problem in each batch, which does not result in the

global optimal for the entire time interval Φ.

IV. THE TASK-PRIORITY GREEDY APPROACH

In this section, we propose a task-priority greedy (TPG)

approach, which first iteratively assigns the set of B workers

with the highest cooperation quality score to the most suitable

task having not be assigned with any workers, then keeps

selecting the “best” worker-and-task pair with the maximum

total cooperation quality increase until all the tasks are as-

signed with enough workers or every available worker has

been assigned to his/her most suitable task. The intuition of

TPG is to first greedily finish as many tasks as possible,

then greedily assign workers to tasks with the maximum total

cooperation score increase. The TPG approach can be applied

to the batch process in line 6 of the batch-based framework

shown in Algorithm 1.

The Cooperation Quality Increase of Assigning Worker
wi to Task tj . Before we present the TPG algorithm, we first

define the total cooperation quality increase, ΔQ(
wi, tj), of

assigning worker wi to task tj as following:

ΔQ(wi, tj) = Q(Wj)−Q(Wj − {wi}),
(4)

where Wj is the assigned workers of task tj (including worker

wi), and Q(Wj) indicates the cooperation quality calculated

with Equation 2.

We propose a two-stage task-priority greedy approach

shown in Algorithm 2. In the first stage, we assign each task

a set of B workers with a high cooperation score (lines 2 -

13); in the second stage, we iteratively select a new worker-

and-task pair with the highest total cooperation quality score

increase (lines 15 - 20). Specifically, we first initial a temp

set T as an empty set to store the tasks having been assigned

with B workers (line 1). In each iteration of the first stage,

we first calculate the “best” set of B workers for each task

(lines 3 - 4), then select the set W ∗
B of B workers with the

highest cooperation score among all the tasks in
T(ϕ) (line

5). If the worker set W ∗
B is the “best” pair for more than

one task, we assign them to the task with the most potential

candidate workers to guarantee the task has a wider range to

select other workers in the second stage (lines 6 - 9). In each

iteration of the second stage, we first select a worker-and-task

pair 〈wi, tj〉 with the highest total cooperation quality score

increase (defined in Equation 4) from the remaining available

workers W(ϕ) and tasks T(ϕ). Then, we put the selected pair

〈wi, tj〉 in to the assignment set A (line 17). In addition, if

we find task tj has been assigned with enough workers, we

remove it from the set, T(ϕ), of available tasks (lines 19 - 20).

Finally, we return the achieved assignment A for the system

to notify the selected workers about their assigned tasks.

The Time Complexity. Next, we analyze the time complexity

of the TPG approach shown in Algorithm 2. Assume that each

worker is valid to n̄ tasks and each task is valid to
¯
m

workers
and require ā workers to complete. Specifically, in each

iteration of the first stage (lines 2 - 13), to greedily find the
B-

worker set with the highest cooperation quality score for each

one of n tasks, it needs O(m̄n) time (lines 3 - 4). To select one

B-worker set with the highest cooperation score for all tasks

needs O(n) (line 5). To solve the competing for the best twined

worker-pair, it needs at most O(m̄) (line 6 - 9). As in each

iteration at least one task will be assigned with a B-worker set,

there are at most n iterations. Thus, the time complexity of the

first stage is O(m̄n2). In the second stage, there are at most

max(O(mn̄), O(m̄n)) valid worker-and-pairs, thus to select

one “best” worker-and-task pair needs max(O(mn̄)
, O(m̄n))

time (line 16). In addition, as we just need at most
(ā− 2)n

more worker-and-task pairs to complete all the n
tasks and

each iteration we will assign at least one worker-and-task
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pair, there are at most (ā − 2)n iterations. Then, the second

stage needs max(O(mnn̄), O(m̄n2)). Thus, the overall time

complexity of the TPG approach is max(O(mnn̄), O(m̄n2)).

V. THE GAME THEORETIC APPROACH

Although TPG can solve CA-SC problem approximately,

it assumes the authority of the centralized server: workers will

follow the instructions of the server to conduct the assigned

tasks. The fundamental nature of the CA-SC problem is that

each worker needs to interact with other workers during con-

ducting tasks. For each worker, he/she may prefer to cooperate

with other workers who have high cooperation quality scores

with him/her such that the tasks can be quickly finished with

high quality. Then he/she may receive either better reputational

or monetary awards. To conform to the individual incentives

of workers and achieve better societal welfare, numerous

game theoretic models are developed in economics, politics

and networks studies [3], [18], [20]. Based on the existing

studies in game theoretic models, in this section we propose

a game theoretic solution that can iteratively adjust a valid

assignment of workers to tasks until the Nash equilibrium is

met [16]. Intuitively, in a Nash equilibrium assignment, any

single worker cannot improve his/her cooperation quality score

by unilaterally switching from the assigned task to other tasks

when other workers stay in their assigned tasks, which means

workers will voluntarily select the assigned tasks when they

have freedom to do so. In addition, usually a Nash equilibrium

assignment can result in a high total cooperation quality score

since each worker is assigned to his/her “best” task in the

stable assignment, which is confirmed in our experimental

study in Section VI. Note that, a Nash equilibrium assignment

does not guarantee the global optimal result, and we prove the

theoretical quality of the results in Section V-C.

We first introduce the basics of game theory, then introduce

the game theoretic approach with two optimization methods.

A. Game Theory

Game theory is the study of mathematical models of conflict

and cooperation between intelligent rational decision-makers,

which is widely used in economics, political science, and

computer science [9]. In strategic games, there are a set of

players N competing or cooperating for some resources in

order to optimize their individual objective functions (utilities).

For each player i ∈ N , he/she can choose one strategy si
(i.e., conducting task tx) out from the set of his/her possible

strategies Si, and has a utility function Ui, whose value

depends on the strategy of player i as well as the strategies of

other players. The input of the utility function Ui is a given

joint strategy S ∈ S, where S is the Cartesian product of the

actions of all players (i.e., S = S1 × S2 × · · · × S|N |). Let

si be the strategy of player i in the joint strategy S and s−i

be the joint strategies of all other players except for player i.
A strategic game has a pure Nash equilibrium [19] S∗ ∈ S,

if and only if for every player i ∈ N we have the following

conditions:
Ui(s

∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i), ∀si ∈ Si

Algorithm 3: Game Theoretic Approach

Input: A set W(ϕ) of available workers and a set T(ϕ) of
tasks at timestamp ϕ

Output: Nash Equilibrium

1 Apply TPG approach to achieve an initial assignment

2 while Not Nash Equilibrium do
3 foreach wi ∈W(ϕ) do
4 select the best-response task tj for worker wi

5 assign worker wi to task tj

6 return the assignment of each worker

In other words, in a Nash equilibrium no player can improve

his/her utility by unilaterally changing his/her strategy when

other players persist in their current strategies.

One common used framework to search a Nash equilibrium

S∗ ∈ S for a given strategic game G = 〈N , S, {Ui}i∈N �→
N〉 is the best-response framework [21], which first randomly

selects a strategy for each player, then iteratively selects the

“best” strategy for each player i based on the current strategies

of other players until a Nash equilibrium is found (i.e., no one

will change the selected strategy).

There are several issues related to the best-response frame-

work: a) Stability: whether the best-response frame can find a

Nash equilibrium; b) Convergence: how fast it can converge;

c) Quality: how good is the found solution. We will first

propose one game theoretic approach to solve our CA-SC
problem, then answer the three issues related to the approach

one-by-one.

B. The Game Theoretic Approach

In this section, we first model a CA-SC problem instance

as a strategic game G then propose a game theoretic approach

(GT) based on the best-response framework to find a Nash

equilibrium joint strategy for the strategic game G, where every

worker is assigned to his/her “best” task such that a high total

cooperation quality score is achieved. Specifically, we model

each worker wi as a player i, whose target is to select a “best”

task with the highest cooperation score (utility) for him/her.

For each player wi, his/her strategy set Si indicates all the

possible strategies that he/she can choose (e.g., all the valid

tasks he/she can conduct). Then, a joint strategy S for the

strategic game G corresponds to an assignment A for the CA-
SC problem instance.

We first define the utility function Ui of worker wi in the
joint strategy S as the cooperation quality score increase:

Ui(S) = Ui(si, s−i) = ΔQ(wi, tj) = Q(Wj)−Q(Wj−{wi}) (5)

where Wj is the assigned workers of task tj (worker wi selects

task tj). Then, we propose a basic game theoretic approach,

shown in Algorithm 3, to achieve a Nash equilibrium for a

set of workers W(ϕ) and a set of tasks T(ϕ) at timestamp

ϕ. Specifically, we first apply TPG approach to achieve

an initial assignment (lines 1). Next, we iteratively adjust

each worker’s strategy to his/her best-response strategy that

maximizes his/her utility function Ui (as defined in Equation

5) according to the other workers’ current joint strategy until a
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Nash equilibrium is found (i.e., no worker will change his/her

strategy in the best-response framework) (lines 2 - 5). Here,

each iteration of the WHILE loop (lines 2-5) is called a round.

C. Analysis of the Game Theoretic Approach

In this section, we analyze the three important issues related

to the game theoretic approach (Algorithm 3): a) whether it can

find a Nash equilibrium (Stability); b) how fast it can converge

(Convergence); c) how good is the found result (Quality).
The Stability of the Approach. We prove that Algorithm 3
can finally result in a Nash equilibrium. To prove the stability
of Algorithm 3, we first introduce the theory of Potential
Games [17]. A strategic game G = 〈N , S, {Ui}i∈N �→ R〉
is called an exact potential game if and only if there exists a
potential function F (S) : S �→ R such that:

Ui(si, s−i)− Ui(s
′
i, s−i) = F (si, s−i)− F (s′i, s−i), ∀si, s′i ∈ Si

where si and s′i are the strategies that worker wi can select,
and s−i is the joint strategy of the other workers except for

worker wi. Intuitively, in an exact potential game, the change

in a single player’s utility due to his/her own strategy deviation

results in exactly the same amount of change in the potential

function. The most important property of potential games is

that the best-response framework always converges to a pure

Nash equilibrium for finite-strategy potential games [17].

Next, we prove the stability of the basic game theoretic ap-

proach by proving the strategic game of our CA-SC problem is

an exact potential game in the following theorem. Specifically,

we define the potential function F as the objective function

in Equation 3.

Theorem V.1. The strategic game of the CA-SC problem is
an exact potential game.

Proof. Let si and s′i be any other response strategy of worker
wi. Here a given joint strategy s−i is for the other workers
except for worker wi. We note the task selected in strategies
si and si as tasks tj and tk, respectively, then we have:

F (si, s−i)− F (si, s−i)

= Q(Wj) +Q(Wk − {wi}) +
∑

tx∈T−{tj ,tk}
Q(Wx)

−
(
Q(Wk) +Q(Wj − {wi}) +

∑
tx∈T−{tj ,tk}

Q(Wx)
)

= Q(Wj) +Q(Wk − {wi})−
(
Q(Wk) +Q(Wj − {wi})

)
= Q(Wj)−Q(Wj − {wi})−

(
Q(Wk)−Q(Wk − {wi})

)
= Ui(si, s−i)− Ui(si, s−i) (6)

Thus, according to the definition of potential games [17],

the strategic game of the CA-SC problem is an exact potential

game.

Based on the theory of potential games, with Theorem

V.1, we achieve the conclusion that the best-response based

game theoretic approach (shown in 3) can finally result in a

pure Nash equilibrium since the strategic game of the CA-SC
problem is a potential game and has finite strategies.

The Convergence of the Approach. To answer the conver-

gence speed of the GT approach (Algorithm 3), we need to

know how many rounds it needs to find a stable result (a pure

Nash equilibrium) and the time complexity of each round.

To estimate the upper bound of the total rounds that the

GT approach needs to achieve a pure Nash equilibrium,

we consider a scaled version of the problem where the

objective function takes integer values. Specifically, for the

corresponding potential game of a CA-SC problem instance,

〈N , S, {Ui}i∈N �→ R〉, we assume that there is an equivalent

game with potential function FZ(S) = d · F (S), where d
is a positive multiplicative factor chosen such that FZ(S) ∈
Z, ∀S ∈ S. With this scaled potential function, we show that

the GT approach executes at most FZ(S∗) rounds, where S∗

is the best strategy the workers can select in this potential

CA-SC game (i.e., FZ(S∗) is the product of optimal value of

the objective function Q(T(ϕ)) and the positive multiplicative

factor d).

Lemma V.1. The GT approach requires at most FZ(S∗)
rounds to achieve a pure Nash equilibrium, where FZ(S∗)
(= d · F (S∗)) is a scaled potential function with only integer
values and S∗ is the optimal joint strategy the workers can
select in the potential CA-SC game.

Proof. The GT approach (Algorithm 3) converges when no

workers deviates from their current strategies, which means

in each round (lines 3-6 in Algorithm 3) there is at least one

worker deviating from his/her current strategy. In addition,

the change of each worker wi from his/her current strategy

si to a better strategy s′i will improve the scaled potential

function at least 1 (i.e., FZ(s
′
i, s−i)−FZ(si, s−i) ≥ 1), which

is because 1) for potential games, the change in a single

player’s utility due to his/her own strategy deviation results in

exactly the same amount of change in the potential function;

2) FZ(S) ∈ Z. Thus, in each round, the value of the scaled

potential function will increase at least 1. Since the maximum

value of the scaled potential function is FZ(S∗) and the total

cooperation quality score is always positive, the GT approach

needs at most FZ(S∗) rounds to converge to a pure Nash

equilibrium.

However, we do not know the optimal joint strategy of the

workers unless we enumerate all the possible strategies, which

is impractical due to that the CA-SC problem is NP-hard (as

proven in Theorem II.1). Thus, we need to estimate the upper

bound of FZ(S∗) (= d ·∑tj∈T(ϕ)
Q(W ∗

j ), where W ∗
j is the set

of workers assigned to task tj in the optimal joint strategy).

We notice that if we can calculate the optimal value of the

cooperation quality score of each task tj , noted as Qmax(tj),
we can estimate the upper bound of the scaled potential

function as FZ(S∗) ≤ d ·∑tj∈T(ϕ)
Qmax(Wj). However, to

find aj workers having the highest cooperation quality score

for task tj is also a NP-hard problem, which is called the

Maximum Weight Connected k-Induced Subgraph Problem

and is proved NP-hard by reducing from the CLIQUE problem

[2]. Nevertheless, we can estimate the upper bound of the

cooperation quality score Q(W ∗
j ) of task tj in the optimal

joint strategy with the lemma below.
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Lemma V.2. Given a group Wx of |Wx| ≥ B workers,
for any worker wi ∈ Wx, we have

∑
wk∈Wx∧k �=i qi(wk)

|Wx|−1 ≤
∑

wk∈Ŵi
B−1

∧k �=i
qi(wk)

B−1 = q̂i,B , where Ŵ i
B−1 is a set of B − 1

workers who have the B−1 highest cooperation quality scores
to worker wi. q̂i represents the highest average quality score
of worker wi in a group of not less than B workers.

Proof.
∑

wk∈Wx∧k �=i qi(wk)

|Wx| − 1

=

∑
wk∈Wx∩Ŵi

B−1
∧k �=i

qi(wk) +
∑

wk∈Wx−Ŵi
B−1

∧k �=i
qi(wk)

|Wx| − 1

≤
∑

wk∈Wx∩Ŵi
B−1

∧k �=i
qi(wk) + |Wx − Ŵ i

B−1|qB−1
i,max

|Wx| − 1

≤
∑

wk∈Ŵi
B−1

∧k �=i
qi(wk)

B − 1
= q̂i,B (7)

where qB−1
i,max is the (B − 1)th maximum cooperation quality

score of worker wi.

Then, we have the cooperation quality score of task tj in
the optimal joint strategy is upper bounded by

Q̂tj =
∑

wx∈Ŵj

q̂x, (8)

where Ŵj is a set of aj workers who have top aj highest value
of q̂x. On the other hand, the upper bound should be lower than
the summation of the highest average quality scores q̂i,B of
all the workers. Thus the upper bound of the total cooperation
quality revenue can be calculated as

Q̂(ϕ) = min(
∑

tj∈T(ϕ)

Q̂tj ,
∑

wi∈W(ϕ)

q̂i,B) (9)

Then, the GT approach requires at most FZ(S∗) ≤ d · Q̂(ϕ)

rounds to reach a Nash equilibrium

Similarly, we have the lemma below about the lowest

average quality score q̌i,B of a worker wi in a group of not

less than B workers.

Lemma V.3. Given a group Wx of |Wx| ≥ B workers,
for any worker wi ∈ Wx, we have

∑
wk∈Wx∧k �=i qi(wk)

|Wx|−1 ≥
∑

wk∈W̌i
B−1

∧k �=i
qi(wk)

B−1 = q̌i,B , where W̌ i
B−1 is a set of B − 1

workers who have the B−1 lowest cooperation quality scores
to worker wi.

Time Complexity. With the upper bound of the total rounds to

reach a Nash equilibrium, we can analyze the time complexity

of GT algorithm as O(mn
∑

tj∈T(ϕ)
Q̂tj ), where Q̂tj is the

upper bound of the cooperation quality score of task tj .

Specifically, in Algorithm 3, to randomly assign each worker

to a task needs O(n) (lines 1 - 2). In each round of lines 3 -

7, it needs O(mn) to select the best action for every workers

(lines 4 - 6). As GT needs at most d ·∑tj∈T(ϕ)
Q̂tj rounds

to find a Nash equilibrium, the whole time complexity of it is

O(mn
∑

tj∈T(ϕ)
Q̂tj ).

The Quality of the Approach. For any strategic game, there

may be many Nash equilibriums with different qualities w.r.t.

the global objective functions [21]. In existing studies about

Game theory [9], [17], [21], three measures are widely used

to evaluate the quality of equilibria: 1) social optimum (OPT);

2) price of stability (PoS); 3) price of anarchy (PoA). The

social optimum is the result that achieves the global optimal

joint strategy w.r.t the given global objective function (i.e., the

overall utility (or cost) is maximum (or minimum), which is

also the goal of the related optimization problem.). PoS of

a strategic game indicates the ratio of the best utility value

achieved among all the equilibria to the OPT (i.e., PoS =

value of the best equilibrium / OPT). For another, PoA of

a strategic game describes the ratio of the worst utility value

achieved by equilibria to the OPT (i.e., PoA = value of the

worst equilibrium / OPT). Intuitively, PoS and PoA reflect

the upper and lower bounds of the ratio of the utility value

achieved by equilibria to the OPT, respectively. We show the

upper bound of PoS and the lower bound of PoA as follows.

Theorem V.2. In the strategic game of CA-SC, the lower
bound of PoA is NinitBq̌

Q̂(ϕ)
and the upper bound of PoS is 1,

where Ninit is the number of finished tasks in the initialization
stage of GT, and q̂ is the minimum average cooperation quality
score of any worker in a set of B workers.

Proof. Let Q(S) be the overall cooperation quality score of

the corresponding assignment A of the joint strategy S (i.e.,

Q(S) = F (S)). In addition, we note the global optimal joint

strategy as Ŝ, the equilibrium with the best total cooperation

quality score as S∗, and the equilibrium with the worst total

cooperation quality score as S#.

As for any strategy S, we have Q(S) = F (S), we have:

Q(Ŝ) = F (Ŝ) and Q(S∗) = F (S∗). As Ŝ is the joint strategy

that results in the global optimum and S∗ is the equilibrium

that achieves the maximum total cooperation quality score, we

have OPT = Q(Ŝ) = F (Ŝ) ≥ F (S∗) = Q(S∗). As a result,

we directly have:

PoS =
Q(S∗)
OPT

≤ 1 (10)

To estimate the lower bound of PoA, we first analyze the
lower bound of the worst total cooperation quality revenue
achieved by an equilibrium. We can note that in the best-
response iteration, the overall cooperation quality revenue only
can increase, thus the overall cooperation quality revenue must
be larger than that of the result achieved by TPG in the
initialization stage. Let Tinit be the set of finished tasks in
the initialization stage and Ninit be the number of tasks in
Tinit, we have:

Q(S#
) ≥

∑

tj∈Tinit

∑

wi∈Wj

∑
wk∈Wj−{wi} qi(wk)

min(|Wj |, aj)− 1

≥
∑

tj∈Tinit

∑

wi∈Wj

q̌i,B

≥
∑

tj∈Tinit

Bq̌ = NinitBq̌ (11)

where q̌i,B is the lower bound of the average cooperation qual-

ity of worker wi in a set of B workers and q̌ = minwi∈W(φ)
q̌i.

For the upper bound of Q(Ŝ), we have Q(Ŝ) ≤ Q̂(ϕ) (defined

in Equation 9). Thus, PoA = Q(S#)

Q(Ŝ)
≥ NinitBq̌

Q̂(ϕ)
.
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D. Optimization Methods

The game theoretic algorithm shown in Algorithm 3 can

keep adjusting the strategy of each worker until a Nash equilib-

rium is found, where each worker cannot improve his/her own

utility (defined in Equation 5) through unilaterally changing

his/her strategy. However, the game theoretic algorithm may

be slow in solving large scale CA-SC problem instances.

Then, we propose two optimization methods to improve the

efficiency of the Algorithm 3.

Threshold Stop of the Iteration (TSI). The game theoretic

(GT) approach shown in Algorithm 3 is an anytime algorithm

(interruptible algorithm) [23], which means it can be inter-

rupted at anytime and a valid solution can still be returned.

GT is expected to achieve a joint strategy with a higher total

cooperation score, when the more time it keeps running. One

observation in our experiments is that the increase of the total

cooperation score for each round (lines 4 - 6 in Algorithm 3)

will become smaller and smaller until convergence. For real

world applications, we may stop the iteration when the round

increase of the total cooperation score is less than a small value

ε · Qc, where Qc denotes the current total cooperation score

and ε is a given parameter, which will dramatically reduce the

running time of GT approach however only slightly hurt the

total cooperation score.

Lazy-Updating of the Best-Responses of Players (LUB). In

the line 5 of Algorithm 3, we need to find the best-response

strategy of each worker. However, not all the workers’ best-

response strategies need to be recalculated. Then, one direct

optimization of the game theoretic algorithm (shown in Algo-

rithm 3) is to lazy-update the best-response strategies of work-

ers. Here, lazy-updating the best-response strategies means we

only recalculate the best-response strategies of workers when

their best-response strategies will possibly change. We give

two theorems to guide Algorithm 3 to recalculate the best-

response strategy of a given worker wi only when necessary.

Theorem V.3. Given a worker wi and his/her current best-
response strategy: joining task tj , if a new worker wx is
assigned to tj . Worker wi is possible to change his/her current
best-response only when the new worker wx crowds out anther
worker wy from task tj and qi(wy) > qi(wx), which means
worker wi prefers to cooperate with wy than wx.

Proof. Let W̄j be the workers who are currently assigned to

task tj and Wj = W̄j ∪ {wi}. As joining task tj is the best-

response of worker wi, for any other task tk, we have Q(Wj)−
Q(Wj − {wi}) > Q(Wk)−Q(Wk − {wi}).

We assume there exists a worker w′x, having qi(wy) <
qi(w

′
x), who replaces worker wy from task tj and the best-

response strategy of worker wi will change. We note W̄ ′
j =

(W̄j−{wx})∪{w′x} and W ′
j = W̄ ′

j∪{wi}. Then the utility of
assigning worker wi to task tj after the switching from worker

wy to worker w′x is:

Q(W
′
j)−Q(W

′
j − {wi})

= Q(W
′
j − {w′x}) +

∑

wz∈W ′
j
−{w′x}

qz(w
′
x)

−(Q(W
′
j − {wi, w

′
x})−

∑

wz∈W ′
j
−{wi,w

′
x}

qz(w
′
x))

= Q(W
′
j − {w′x})−Q(W

′
j − {wi, w

′
x}) + qi(w

′
x)

= Q(Wj − {wy})−Q(Wj − {wi, wy}) + qi(w
′
x)

> Q(Wj − {wy})−Q(Wj − {wi, wy}) + qi(wy)

= Q(Wj)−Q(Wj − {wi}) (12)

Thus, for any other task tk, we have

Q(W ′
j)−Q(W ′

j − {wi}) > Q(Wk)−Q(Wk − {wi}), (13)

which means after using worker w′x to replace worker wy from

task tj , the best-response strategy of worker wi is still to join

task tj . Thus, worker w′x cannot exist.

Theorem V.3 tells us when will worker wi be possibly

crowded out from his/her current best-response. Next, we show

another situation that worker wi is attracted to another task.

Theorem V.4. Given a worker wi and his/her current best-
response: joining task tj , if a new worker wx is assigned
to another task tk. Worker wi is possible to change his/her
current best-response strategy only when 1) no worker is
crowded out from tk; 2) worker wx crowded out another
worker wy and qi(wy) < qi(wx).

The proof of Theorem V.4 is similar to Theorem V.3, as

space limitation, we omit the proof here.

Thus, we only need to recalculate the best-response of

worker wi when his/her best-response strategy is possibly

changed, which can reduce a lot of unnecessary calculation

in line 5 of Algorithm 3.

VI. EXPERIMENTAL STUDY

In this section, we evaluate the effectiveness and efficiency

of our CA-SC approaches through the experiments on both

real and synthetic data sets.

A. Experimental Methodology

1) Data Sets: We use both real and synthetic data sets to

test our proposed CA-SC approaches. Specifically, for real

data set, we use Meetup data set from [13], which was crawled

from meetup.com between Oct. 2011 and Jan. 2012. There

are 5,153,886 users, 5,183,840 events, and 97,587 groups

in Meetup, where each user is associated with a location,

each group is associated with a set of users who joined in,

and each event is associated with a location to held. Since

workers are unlikely to move between two distant cities to

conduct one spatial task, and the constraint of deadline of

tasks also prevents workers from moving too far, we only

consider those user and event records located in the same

city. Specifically, we select one meetup popular city, Hong

Kong, and extract Meetup records from the area of Hong Kong

(with latitude from 22.209° to 22.609° and longitude from

113.843° to 114.283°), in which we obtain 1,282 tasks and
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TABLE II
EXPERIMENTAL SETTINGS.

Parameters Values
capacity aj of tasks 3, 4, 5, 6

range [v−, v+] of worker speeds (%) [1, 3], [1, 5], [1, 8], [1, 10]

range [r−, r+] of areas of workers (%) [1,5], [5, 10], [10, 15], [15, 20]
remaining time τj of tasks 1, 2, 3, 4, 5
threshold parameter ε 0, 0.01, 0.03, 0.05, 0.08
number, m, of workers in each round 500, 800, 1K, 2K, 5K
number, n, of tasks in each round 100, 300, 500, 800, 1K
number, R, of total rounds 10
least required number, B, of workers 3

3,525 workers. We use the locations of users and events to

initialize the locations of workers and tasks, respectively. For

simplicity, we linearly map check-in locations from Gowalla

and Foursquare into a [0, 1]2 space. To estimate the coopera-

tion quality scores of worker-pairs, for the cooperation quality

score qi(wk) of worker wi to worker wk, we configure it as

qi(wk) = 0.5 ∗ 0.5 + 0.5 ∗ cik
Cik

(i.e., let α = ω = 0.5 and

sj = 1 in Equation 1), where cik is the number of common

attended groups by workers wi and wk and Cik is the number

of union groups attended by wi or wk. We assume that the

more two workers commonly attend groups, the better they

can cooperate. In each round, we uniformly sample required

number of workers and tasks from the meetup dataset.

For synthetic data, we generate the locations of workers

and tasks in a 2D data space [0, 1]2 following either Uniform

(UNIF) or Skewed (SKEW) distribution. For Uniform distri-

bution, we uniformly generate the locations of workers/tasks

in the 2D data space. As for the Skewed distribution, we first

locate 80 % of them into a Gaussian cluster (centered at (0.5,

0.5) with variance = 0.22) and distribute the rest uniformly in

the 2D data space.

For both real and synthetic data sets, we simulate the ve-

locity of each worker with Gaussian distribution within range

[v−, v+], for v−, v+ ∈ (0, 1). For the working range of each

worker wi, we generate ri with Gaussian distribution within

range [r−, r+], for r−, r+ ∈ (0, 1). Here, for the Gaussian

distributions on different ranges, we linearly map data samples

within [−1, 1] of a Gaussian distribution N (0, 0.22) to a target

ranges.

CA-SC Approaches and Measures. We conduct experiments

to compare our approaches, TPG and GT with two base-

line algorithms: a maximum-flow based method [11], namely

MFLOW, and a random method, namely RAND. For the GT
approach, we also test its three variants: GT+LUB, GT+TSI
and GT+ALL by using two optimization methods separately

and jointly.

Specifically, TPG first iteratively assigns a worker-pair with

the highest cooperation quality score to the most suitable task

having not be assigned with any workers, then keeps select-

ing the “best” worker-and-task pair with the maximum total

cooperation quality increase until all the tasks are assigned

with enough workers or every available workers has been

assigned to his/her most suitable task. Then, the GT algorithm

iteratively adjusts the workers’ strategies based on their current

best-response strategies until a Nash equilibrium is found,

which leads to a high overall cooperation score. To improve

the efficiency of GT, we propose two optimization methods,

LUB and TSI in Section V-D. Here, LUB avoids unnecessary
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Fig. 2. Effect of the Capacity aj of Tasks.

recalculation of best-response strategies of workers and TSI
stops the iterations of GT when the total cooperation score

increase ratio is less than a predefined value ε. GT+LUB and

GT+TSI use LUB and TSI on GT separately and GT+ALL
applies the two optimization methods jointly. To evaluate our

approaches, we need to compare the achieved results with the

optimal results. However, as proved in Theorem II.1, CA-SC
is NP-hard, and infeasible to calculate the real optimal results.

Alternatively, we show the effectiveness of our approaches by

comparing with a maximum-flow based method [11], namely

MFLOW, and a random (RAND) method. In MFLOW, each

batch processing is transfered to a maximum flow problem,

then an assignment with the maximum number of valid

worker-and-task pairs is generated for the batch processing

[11]. As for RAND, it randomly chooses a task, and then

randomly assigns a set of valid workers to it. In addition, we

report the upper bound (UPPER) estimated with Equation 9.
Table II summarizes our experimental settings, where the

default values of parameters are in bold font. In each set

of experiments, we vary one parameter, while keeping other

parameters to their default values. For each experiment, we

report the running time and the total cooperation quality

revenue. All our experiments were run on an Intel Xeon X5675

CPU @3.07 GHZ with 32 GB RAM in Java.

B. Experiemnts on Real Data
In this section, we present the effects of the capacity of

tasks aj , the range of workers’ speeds [v−, v+], the range of

the working areas of workers [r−, r+] and the remaining time

of tasks τj on the real dataset.
Effect of the capacity aj of tasks. Figure 2 shows the

experimental results on different capacities of tasks from 3 to

5 while the other parameters are in the default values in Table

II. In Figure 2(a), the total cooperation scores of all the tested

approaches first increase then stay high when the capacities

of tasks increases from 3 to 5. When the capacities of tasks

become 4, each worker can cooperate with more workers,

which leads to the average cooperation utility of each worker

increases. However, there are only a limited number of workers

in each batch and only a small number of more tasks can be

finished when the capacities of tasks increases from 4 to 5.

Thus, the total cooperation scores of approaches have only

a slight increase when the capacities of tasks become higher

than 4. In addition, we can see our CA-SC approaches, GT
and GT variants (GT+LUB, GT+TSI and GT+ALL) achieve

about 5% higher the total cooperation scores than TPG, which

are all significantly higher than that of MFLOW and RAND.

It shows the effectiveness of our TPG and the game theoretic
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Fig. 3. Effect of the Range of Workers’ Moving Speeds [v−, v+].

framework. The total cooperation scores of GT and its variants

are close to each other, which shows our optimization methods

in Section V-D almost do not decrease the total cooperation

scores of the GT variants compared with that of GT. In

addition, the total cooperation quality revenue achieved by

our approaches are close to UPPER, which can show the

effectiveness of our approaches. In Figure 2(b), we present

the running times of all the approaches when the capacities

of tasks increase. RAND runs fastest among all the tested

approaches and TPG is slower than RAND (lower than 5

seconds for each batch). In addition, our GT and its variants

are slower than RAND and TPG. In addition, MFLOW is

the slowest one. Through comparing the running times of GT
and its variants, we can see the two optimization methods in

Section V-D can improve the running speed of GT when they

are used separately. When the two optimization methods are

used together, GT+ALL runs the fastest among GT related

approaches. The results show the effectiveness of our GT
framework. Most importantly, the two optimization methods

reduce the running times of GT but almost do not reduce the

total cooperation scores of GT.

Effect of the range of the moving speeds of workers
[v−, v+]. In Figure 3(a), when the range of moving speeds

of workers increases, the total cooperation scores of all the

tested approaches increases. The reason is that the faster the

workers move, the more tasks they can reach within fixed

remaining time of tasks. Then the approaches can have more

valid worker-and-task pairs to select and find the assignments

with higher total cooperation scores. GT and its variants still

can achieve about 5% higher total cooperation quality revenue

than TPG, which are close to UPPER (from 50% to 78%) and

much higher than that of MFLOW and RAND In Figure 3(b),

when the range of the moving speeds of workers increases,

the running times of all the tested approaches, except for

MFLOW, also increase, which is because that the number

of valid worker-and-task pairs increases when workers move

faster. As the numbers of workers and tasks do not change,

the complexity and running time of MFLOW, a maximum

flow based algorithm, will not change. GT and its variants

are slower than RAND but faster than MFLOW. All our

approaches run fast enough to response to the task requests

within 2 seconds in each batch.

Effect of the range of the working areas of workers
[r−, r+]. Figure 4 presents the experimental results of all

approaches when the range of working areas of workers

varying from [0.05, 0.1] to [0.2, 0.25]. In Figure 4(a), when the
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Fig. 4. Effect of the Range of Working Areas [r−, r+].

range of working areas of workers increases from [0.05, 0.1]

to [0.1, 0.15], the total cooperation quality revenues achieved

by the tested approaches first increase; then they stop growing

when the range of the working areas increasing from [0.1,

0.15] to [0.2, 0.25]. The reason is that, at the beginning, with

the increase of working areas range, workers can reach more

tasks before their deadlines. However, since the moving speeds

of workers and the remaining times of tasks stay unchanged,

which prevents the workers from reaching tasks that are too far

away. Similarly, TPG, GT and GT variants can achieve much

higher total cooperation scores than MFLOW and RAND. In

Figure 4(b), the running times of all the approaches increase

when the working areas of workers get enlarged. GT and its

variants run slower than RAND and TPG but faster than

MFLOW. GT runs the slowest and still can find a Nash

equilibrium within 4 seconds.

Effect of the remaining time τj of tasks. Figure 5 shows the

experimental result of all the approaches when the remaining

time τj of tasks varying from 1 to 5. Specifically, in Figure

5(a), when the remaining time of tasks increases from 1 to 3,

the total cooperation scores achieved by the approaches first

increase; then they stop growing for the remaining time of

tasks increasing from 3 to 5. The reason is that, at the begin-

ning, with the increase of remaining times of tasks, workers

can reach more tasks before their deadlines. However, as the

working areas of workers stay unchanged, which prevents the

workers from reaching more tasks outside their working areas.

TPG, GT and GT variants can achieve much higher total

cooperation scores than RAND and MFLOW. In Figure 5(b),

when the remaining times of tasks increase, the running times

of GT and its variants increase slightly. RAND is faster than

other approaches. GT+ALL is the fastest among GT related

approaches, which shows the effectiveness of the optimization

methods in Section V-D.

C. Experiments on Synthetic Data

In this section, we show the effect of the threshold parameter

ε of the TSI optimization method for GT. Then, we examine

the effectiveness and scalability of our CA-SC approaches by

varying the number of workers m and the number of tasks n
on our synthetic data sets.

Effect of the threshold parameter ε. In Figure 6, we show

the effect of the threshold parameter ε of the TSI optimization

method for GT by showing the results of GT+TSI with

different values of ε varying from 0 to 0.08. In Figure 6(a), the

total cooperation scores of GT+TSI with different values of ε
can achieve similar results. Particularly, only when ε = 0.08,
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Fig. 6. Effect of the threshold parameter ε.

there is a noticeable decrease on the total cooperation score.

In Figure 6(b), the running time of GT+TSI will decrease

when the threshold parameter ε increases. The reason is that

the larger ε is, the less iterations GT+TSI runs. Thus, in the

default setting, we configure ε = 0.05, such that the running

speed of GT+TSI is fast while the total cooperation scores

achieved by GT+TSI are close to the scores achieved by GT.

Effect of the number of workers m. Figure 7 illustrates

the effect of the number, m, of workers in each batch by

varying it from 500 to 5,000 over synthetic data sets while

the other parameters are set as their default values. In Figure

7(a), the tested approaches can achieve higher scores when the

number of workers in each batch increases from 500 to 2,000.

The reason is that, at the beginning, more workers can finish

more tasks. However, when the number of workers reaches

2,000, it is already sufficient to complete all the tasks. GT
and its variants can achieve almost similar total cooperation

scores compared to each other but much higher results than

RAND and MFLOW. We can also see that when m increases,

our approaches can achieve total cooperation quality revenues

closer to UPPER (97% in best). In Figure 7(b), when the

number of workers increases, the running times of all tested

approaches also increase, which is because more workers need

to be checked by the tested approaches. RAND still runs the

fastest and MFLOW runs the slowest.

Effect of the number of tasks n. In Figure 8(a), all tested

approaches can achieve higher cooperation scores when the

number of tasks in each batch increases from 100 to 500; then

the total cooperation scores have almost no increase when the

number of tasks in each batch increases from 500 to 1,000. The

reason is at the beginning, the increase of the number of tasks

leads to more workers are assigned to tasks, which results in

higher total cooperation scores. However, there are only 1,000

workers in each batch. When the number of tasks reaches 500,

almost all the workers have been assigned to tasks. Thus, after

the number of tasks reaches 500, more tasks will not lead to

the increase of the total assigned workers. Similarly, TPG, GT
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and GT variants can achieve much higher total cooperation

scores than RAND and MFLOW. In Figure 8(b), the increase

of the number of tasks causes the running times of all the

approaches increase. The reason is that more tasks need more

time to maintain the valid worker-and-task pairs and select the

best task for each worker. GT+ALL is faster than GT and only

slightly slower than RAND.

In summary, on both real and synthetic data sets, our

TPG, GT and GT variants can achieve much higher total

cooperation scores than MFLOW and RAND. Comparing with

UPPER, our approach can achieve from 50% to 97% of the

upper bounded total cooperation quality revenue, which shows

the effectiveness of our approaches. Most importantly, our

optimization methods for GT can improve its running speed

but only reduce a very small portion of its total cooperation

score, which shows the effectiveness of GT and the two

optimization methods.

VII. RELATED WORK

Spatial Crowdsourcing. The spatial crowdsourcing sys-

tems [4], [11], [31] require workers to move to specific

locations of spatial tasks to perform tasks subjected to the

various constraints. In [11], based on the publishing models,

there are two modes, worker selected tasks (WST) [8] mode

and server assigned tasks (SAT) [5], [6], [11], [25], [33]

mode, in which tasks are selected by or assigned to workers

respectively. In addition, for the SAT mode, from processing

styles, there are two kinds of server assigned tasks modes:

online task assignment mode and batch-based task assignment

mode. Specifically, in the online task assignment mode [25],

[28], the spatial crowdsourcing servers need to immediately

assign valid tasks to workers upon the reaching of workers in a

one-by-one style. However, in the batch-based task assignment

mode [5], [6], [11], [32], [33], the servers periodically assign

a set of tasks to a set of workers.

Our CA-SC problem is in the batch-based SAT mode. Prior

studies in the SAT mode [5], [6], [11], [32], [33] have different
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goals, such as maximizing the number of assigned tasks on the

server side [11], maximizing the reliable-and-diversity score

of assignments [6], maximizing the acceptance rate on the

worker side [33], or maximizing the total assigned number

of tasks while the workers can arrive at their destinations

before their deadlines [32]. In contrast, our CA-SC problem

in this paper assigns workers to spatial tasks under constraints

of working areas of workers, and deadlines and capacities

of tasks with a different goal of maximizing the overall

cooperation score. Here, the higher the cooperation score is,

the better the workers complete the tasks together. Thus, the

existing solution cannot be applied to our problem directly.

As a result, we propose a game theoretic approach with two

optimization methods for our CA-SC problem that maximizes

the total cooperation score under constraints of working areas,

deadlines and capacities.

Ridesharing. Ridesharing allows passengers to share vehi-

cles together to alleviate the public traffic congestion and to

monetarily benefit drivers and passengers, when their travel

routes are similar. Ridesharing requires the drivers to pick

up passengers and send them to their destinations, however,

in spatial crowdsourcing workers only need to conduct the

tasks at the task-specific locations. In [15], they proposed one

framework to handle the online taxi-sharing problem, where

riders and taxis keep arriving and leaving. The framework

will schedule a most suitable vehicle to serve the passenger

when he/she joins the platform such that the time window

and monetary constraints are satisfied. In [10], the researchers

proposed a kinetic tree structure to trace the valid schedule

plans for each vehicle. In [30], the authors consider the fairness

in ridesharing, which means the payments of the passengers

are according to the fair plan (e.g., a stable matching between

riders), and often even lower. In [7], the authors focused

on the utility of the ridesharing scheduling, which includes

the vehicle-related utility, rider-related utility and trajectory-

related utility. In [34], the authors focused on maximizing the

profit of the ridesharing platform.

VIII. CONCLUSION

In this paper, we formalize the problem of cooperation-

aware spatial crowdsourcing (CA-SC) problem, which assigns

a set of moving workers to a set of time and capacity con-

strained spatial tasks, such that the tasks can be accomplished

with high cooperation qualities. We prove that the CA-SC
problem is NP-hard by reducing it from a well-known NP-

hard problem, k-set packing problem (k-SP) and then propose

a greedy based approach and a game theoretic approach with

two optimization methods to solve it. Extensive experiments

have been conducted to show the efficiency and effectiveness

of our CA-SC approaches on both real and synthetic data sets.
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