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Abstract—For decades, the crowdsourcing has gainedmuch attention fromboth academia and industry, which outsources a number of

tasks to humanworkers. Typically, existing crowdsourcing platforms include CrowdFlower,AmazonMechanical Turk (AMT), and so on, in

whichworkers can autonomously select tasks to do. However, due to the unreliability of workers or the difficulties of tasks, workersmay

sometimes finish doing tasks either with incorrect/incomplete answers or with significant time delays. Existing studies considered improving

the task accuracy through voting or learningmethods, they usually did not fully take into account reducing the latency of the task completion.

This is especially critical, when a task requester posts a group of tasks (e.g., sentiment analysis), and one can only obtain answers of all

tasks after the last task is accomplished. As a consequence, the time delay of even one task in this group could delay the next step of the

task requester’s work fromminutes to days, which is quite undesirable for the task requester. Inspired by the importance of the task

accuracy and latency, in this paper, wewill propose a novel crowdsourcing framework, namely Fast andReliable crOwdsourcin

G framework (FROG),which intelligently assigns tasks to workers, such that the latencies of tasks are reduced and the expected accuracies

of tasks aremet. Specifically, our FROG framework consists of two important components, task scheduler and notificationmodules. For the

task schedulermodule, we formalize a FROG task scheduling (FROG-TS) problem, in which the server actively assignsworkers to tasks to

achieve high task reliability and low task latency.We prove that the FROG-TS problem is NP-hard. Thus, we design two heuristic

approaches, request-based and batch-based scheduling. For the notificationmodule, we define an efficient worker notifying (EWN)

problem, which only sends task invitations to thoseworkerswith high probabilities of accepting the tasks. To tackle the EWNproblem, we

propose a smooth kernel density estimation approach to estimate the probability that aworker accepts the task invitation. Through extensive

experiments, we demonstrate the effectiveness and efficiency of our proposed FROGplatform on both real and synthetic data sets.

Index Terms—Crowdsourcing framework, scheduling algorithm, greedy algorithm, EM algorithm

Ç

1 INTRODUCTION

NOWADAYS, the crowdsourcing has become a very use-
ful and practical tool to process data in many real-

world applications, such as the sentiment analysis [35],
image labeling [44], and entity resolution [43]. Specifically,
in these applications, we may encounter many tasks (e.g.,
identifying whether two photos have the same person in
them), which may look very simple to humans, but not that
trivial for the computer (i.e., being accurately computed by
algorithms). Therefore, the crowdsourcing platform is used
to outsource these so-called human intelligent tasks (HITs) to
human workers, which has attracted much attention from
both academia [17], [30], [32] and industry [23].

Existing crowdsourcing systems (e.g., CrowdFlower [3] or
Amazon Mechanical Turk (AMT) [1]) usually wait for autono-
mous workers to select tasks. As a result, some difficult tasks
may be ignored (due to lacking of the domain knowledge)
and left with no workers for a long period of time (i.e., with
high latency). What is worse, some high-latency (unreliable)

workers may hold tasks, but do not accomplish them (or fin-
ish them carelessly), whichwould significantly delay the time
(or reduce the quality) of completing tasks. Therefore, it is
rather challenging to guarantee high accuracy and low
latency of tasks in the crowdsourcing system, in the presence
of unreliable and high-latencyworkers.

Consider an example of auto emergency response on
interest public places, which monitors the incidents hap-
pened at important places (e.g., crossroads). In such appli-
cations, results with low latencies and high accuracies are
desired. However, due to the limitation of current computer
vision and AI technology, computers cannot do it well with-
out help from humans. For example, people can know one
car may cause accidents only when they know road signs in
pictures and the traffic regulations, what computers cannot
do. Applications may embed “human power” into the sys-
tem as a module, which assigns monitoring pictures to
crowdsourcing workers and aggregates the answers (e.g.,
“Normal” or “Accident”) from workers in almost real-time.
Thus, the latency of the crowdsourcing module will affect
the overall application performance.

Example 1 (Accuracy and Latency Problems in the
Crowdsourcing System).The application above automati-
cally selects and posts 5 pictures as 5 emergency reorgani-
zation tasks t1 � t5 at different timestamps, respectively,
on a crowdsourcing platform. Assume that 3 workers,
w1 � w3, from the crowdsourcing system autonomously
accept some or all of the 5 tasks, ti (for 1 � i � 5, posted by
the emergency response system.
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Table 1 shows the answers and time delays of tasks con-
ducted by workers, wj (1 � j � 3Þ, where the last column
provides the correctness (“

p
” or “�”) of the emergency

reorganization answers against the ground truth. Due to
the unreliability of workers and the difficulties of tasks,
workers cannot always do the tasks correctly. That is, work-
ers may be more confident to do specific categories of tasks
(e.g., biology, cars, electronic devices, and/or sports), but
not others. For example, in Table 1, worker w2 tags all pic-
tures (tasks), t1 � t5, with 3 wrong labels. Thus, in this case,
it is rather challenging to guarantee the accuracy/quality of
emergency reorganization (task) answers, in the presence
of such unreliableworkers in the crowdsourcing system.

Furthermore, from Table 1, all the 5 tasks are completed
byworkerswithin 20 seconds, except for task t2 which takes
worker w2 5 minutes to finish (because of the difficulty of
task t2). Such a long latency is highly undesirable for the
emergency response application, who needs to proceed
with the emergency reorganization results for the next step.
Therefore, with the existence of high latency workers in the
crowdsourcing system, it is also important, yet challenging,
to achieve low latency of the task completion.

Specifically, the FROG framework contains two impor-
tant components, task scheduler and notification modules. In
the task scheduler module, our FROG framework actively
schedules tasks for workers, considering both accuracy and
latency. In particular, we formalize a novel FROG task sched-
uling (FROG-TS) problem, which finds “good” worker-and-
task assignments that minimize the maximal latencies for all
tasks and maximize the accuracies (quality) of task results.
We prove that the FROG-TS problem is NP-hard, by reduc-
ing it from the multiprocessor scheduling problem [20]. As a
result, FROG-TS is not tractable. Alternatively, we design
two heuristic approaches, request-based and batch-based
scheduling, to efficiently tackle the FROG-TS problem.

Note that, existing studies on reducing the latency are
usually designed for specific tasks (e.g., filtering or resolving
entities) [36], [41] by increasing prices over time to encour-
age workers to accept tasks [19], which cannot be directly
used for general-purpose tasks under the budget constraint
(i.e., the settings in our FROG framework). Some other stud-
ies [17], [22] removed low-accuracy or high-latency workers,
which may lead to idleness of workers and low throughput
of the system. In contrast, our task scheduler module takes
into account both factors, accuracy and latency, and can
design a worker-and-task assignment strategy with high
accuracy, low latency, and high throughput.

In existing crowdsourcing systems, workers can freely join
or leave the system.However, in the case that the system lacks
of active workers, there is no way to invite more offline work-
ers to perform online tasks. To address this issue, the notifica-
tion module in our FROG framework is designed to notify
those offline workers via invitation messages (e.g., by mobile
phones). However, in order to avoid sending spammessages,
we propose an efficient worker notifying (EWN) problem,which
only sends task invitations to those workers with high proba-
bilities of accepting the tasks. To tackle the EWN problem, we
present a novel smooth kernel density estimation approach to
efficiently compute the probability that a worker accepts the
task invitation.

To summarize, in this paper, we have made the follow-
ing contributions.

� We propose a new FROG framework for crowdsourc-
ing, which consists of two important task scheduler
and notificationmodules in Section 2.

� We formalize and tackle a novel worker-and-task sche-
duling problem in crowdsourcing, namely FROG-TS,
which assigns tasks to suitable workers, with high reli-
ability and low latency in Section 3.

� We propose a smooth kernel density model to estimate
the probabilities that workers can accept task invita-
tions for the EWN problem in the notification mod-
ule in Section 4.

� We conduct extensive experiments to verify the
effectiveness and efficiency of our proposed FROG
framework on both real and synthetic data sets in
Section 5.

Section 6 reviews previous studies on the crowdsourcing.
Section 7 concludes this paper.

2 PROBLEM DEFINITION

2.1 The FROG Framework

Fig. 1 illustrates our fast and reliable crowdsourcing (FROG)
framework, which consists of worker profile manager, public
worker pool, notification module, task scheduler module, and quality
controller.

Specifically, in our FROG framework, the worker profile
manager keeps track of statistics for eachworker in the system,
including the response time (or in other words, the latency)
and the accuracy of doing tasks in each category. These statis-
tics are dynamically maintained, and can be used to guide the
task scheduling process (in the task schedulermodule).

Moreover, the public worker pool contains the informa-
tion of online workers who are currently available for doing
tasks. Different from the existing work [22] with exclusive
retainer pool, we use a shared public retainer pool, which
shares workers for different tasks. It can improve the global
efficiency of the platform, and benefit workers with more
rewards by assigning with multiple tasks (rather than one
exclusive task for the exclusive pool).

When the number of online workers in the public worker
pool is small, the notification module will send messages to
offline workers (e.g., via mobile devices), and invite them to
join the platform. Since offline workers do not want to
receive too many (spam) messages, in this paper, we will
propose a novel smooth kernel density model to estimate the
probabilities that offline workers will accept the invitations,
especially when the number of historical samples is small.

TABLE 1
Answers of Tasks from Workers

Worker Task Answer Time Latency Correctness

w1 t1 Normal 8 s �
w1 t2 Accident 9 s �
w1 t3 Accident 12 s

p
w2 t1 Accident 15 s �
w2 t2 Normal 5 min

p
w2 t3 Normal 10 s �
w2 t4 Accident 9 s

p
w2 t5 Accident 14 s �
w3 t4 Accident 8 s

p
w3 t5 Normal 11 s

p
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This way, we will only send task invitations to those offline
workers with high probabilities of accepting the tasks.

Most importantly, in FROG framework, the task scheduler
module assigns tasks to suitable workers with the goals of
reducing the latency and enhancing the accuracy for tasks. In
this module, we formalize a novel FROG task scheduling
(FROG-TS) problem, which finds good worker-and-task
assignments to minimize the maximal task latencies and to
maximize the accuracies (quality) of task results. Due to the
NP-hardness of this FROG-TS problem (proved in Section
3.3), we design two approximate approaches, request-based
and batch-based scheduling approaches.

Finally, the quality controller is in charge of the quality
management during the entire process of the FROG frame-
work. In particular, before workers are assigned to do tasks,
we require that each worker need to register/subscribe one’s
expertise categories of tasks. To verify the correctness of sub-
scriptions, the quality controller provides workers with some
qualification tests, which include several sample tasks (with
ground truth already known). Then, the system will later
assign them with tasks in their qualified categories. Further-
more, after workers submit their answers of tasks to the sys-
tem, the quality controller will check whether each task has
received enough answers. If the answer is yes, it will aggre-
gate answers of each task (e.g., via voting methods), and then
return final results.

In this paper, we will focus on general functions of two
important modules, task scheduler and notification modules,
in the FROG framework (as depicted in Fig. 1), which will be
formally defined in the next two sections. Note that the notifi-
cation module is only an optional component of our frame-
work. If we remove the notification module from our FROG
framework, our FROG framework can continue to work on
crowdsourcing tasks (e.g., worker pool management, task
scheduling and quality controlling). For example, in [17] and
[22], the authors use the ExternalQuestion mechanism of
AMT [1] to manage microtasks on their own Web server and
take full control of microtask assignments. On the other hand,
if sending messages through mobile phones or notification
mechanisms are allowed in our framework, our system can
do better by inviting reliable workers. In addition, we imple-
ment our framework and use WeChat [5] as its client to send
tasks to workers and receive answers from workers. Workers
will get paid by WeChat red packets after they contribute to

the tasks. Other message Apps such as Whatsapp [6] and
Skype[4] can also be used as clients.

2.2 The Task Scheduler Module
The task scheduler module focuses on finding a good
worker-and-task assignment strategy with low latency (i.e.,
minimizing the maximum latency of tasks) and high reli-
ability (i.e., satisfying the required quality levels of tasks).

Tasks and Workers. We first give the definitions for tasks
and workers in the FROG framework. Specifically, since our
framework is designed for general crowdsourcing plat-
forms, we predefine a set, C, of r categories for tasks, that is,
C ¼ fc1; c2; . . . ; crg, where each task belongs to one category
cl 2 C (1 � l � r). Here, each category can be the subject of
tasks, such as cars, food, aerospace, or politics.

Definition 1 ðTasksÞ. Let T ¼ ft1; t2; . . . ; tmg be a set of m
tasks in the crowdsourcing platform, where each task ti
(1 � i � m) belongs to a task category, denoted by ti:c 2 C, and
arrives at the system at the starting time si. Moreover, each task
ti is associated with a user-specified quality threshold qi, which is
the expected probability that the final result for task ti is correct.

Assume that task ti is accomplished at the completion
time fi. Then, the latency, li, of task ti can be given by:
li ¼ fi � si, where si is the starting time (defined in Defini-
tion 1). Intuitively, the smaller the latency li is, the better the
performance of the crowdsourcing platform is.

Definition 2 ðWorkersÞ. Let W ¼ fw1; w2; . . . ; wng be a set of
n workers. For tasks in category cl, each worker wj (1 � j � n)
is associated with an accuracy, ajl, that wj do tasks in category
cl, and a response time, rjl.

As given in Definition 2, the category accuracy ajl is the
probability that worker wj can correctly accomplish tasks in
category cl. Here, the response time rjl measures the period
length from the timestamp that worker wj receives a task ti
(in category cl) to the time point that he/she submits ti’s
answer to the server.

In the literature, in order to tackle the intrinsic error rate
(unreliability) ofworkers, there are some existing votingmeth-
ods for result aggregations in the crowdsourcing system, such
as the majority voting [11], weighted majority voting [17], half
voting [34], and Bayesian voting [32]. For the ease of presenta-
tion, in this paper, we use the majority voting for the result
aggregation, which has been well accepted in many crowd-
sourcing studies [11]. Assuming that the count of answering
task ti is odd, if the majority workers (not less than dk2e work-
ers) vote for a same answer (e.g., Yes), we take this answer as
the final result of task ti. DenoteWi as the set of kworkers that
do task ti, and cl as the category that task ti belongs to. Then,
we have the expected accuracy of task ti as follows:

PrðWi; clÞ ¼
Xk
x¼dk2e

X
Wi;x

� Y
wj2Wi;x

ajl

Y
wj2Wi�Wi;x

ð1� ajlÞ
�
; (1)

whereWi;x is a subset ofWi with x elements.
Specifically, the expected task accuracy, PrðWi; clÞ, calcu-

lated with Eq. (1) is the probability that more than half of
the workers in Wi can answer ti correctly. In the case of
voting with multiple choices (other than 2 choices, like
YES/NO), please refer to Appendix A, which can be found
on the Computer Society Digital Library at http://doi.

Fig. 1. An Illustration of the FROG framework.
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ieeecomputersociety.org/10.1109/TKDE.2018.2849394, for
the equations of the expected accuracy of task ti with major-
ity voting or other voting methods. Table 2 summarizes the
commonly used symbols.

The FROG Task Scheduling Problem. In the task scheduler
module, one important problem is on how to route tasks to
workers in the retainer pool with the guaranteed low
latency and high accuracy. Next, we will formally define
the problem of FROG Task Scheduling (FROG-TS) below.

Definition 3 (FROG Task Scheduling Problem). Given a
set T of m crowdsourcing tasks, and n workers in W , the prob-
lem of FROG task scheduling (FROG-TS) is to assign work-
ers wj 2W to tasks ti 2 T , such that:

1) the accuracy PrðWi; clÞ (given in Eq. (1)) of task ti is
not lower than the required accuracy threshold qi,

2) the maximum latency maxðliÞ of tasks in T is mini-
mized, where li ¼ fi � si is the latency of task ti, that
is, the duration from the time si task ti is posted in the
system to the time, di, task ti is completed.

We will later prove that the FROG-TS problem is NP-
hard (in Section 3.3), and propose two effective approaches,
request-based and batch-based scheduling, to solve this
problem in Section 3.4.

2.3 The Notification Module

The notification module is in charge of sending notifications
to those offline workers with high probabilities of being avail-
able and accepting the invitations (when the retainer pool
needs more workers). In general, some workers may join the
retainer pool autonomously, but it cannot guarantee that the
retainer pool will be fulfilled quickly. Thus, the notification
modulewill invitemore offlineworkers to improve the fulfill-
ing speed of the retainer pool.

Specifically, in our FROG framework, the server sidemain-
tains a public worker pool to support all tasks from the
requesters. When autonomous workers join the system with a
low rate, the system needs to invitemore workers to fulfill the
worker pool, and guarantees high task processing speed of
the platform. One straightforward method is to notify all the
offlineworkers. However, this broadcast methodmay disturb
workers, when they are busy with other jobs (i.e., the proba-
bilities that they accept invitations may be low). For example,
assume that the system has 10,000 registered workers, and
only 100 workers may potentially accept the invitations. With
the broadcast method, all 10,000 workers will receive the noti-
fication message, which is inefficient and may potentially

damage the user experience. A better strategy is to send notifi-
cations only to those workers who are very likely to join the
worker pool. Moreover, we want to invite workers with high-
accuracy and low-latency. Therefore, we formalize this prob-
lem as the efficient worker notifying (EWN) problem.

Definition 4 (Efficient Worker Notifying Problem).
Given a timestamp ts, a set W of n offline workers, the histori-
cal online records Ej ¼ fe1; e2; . . . ; eng of each worker wj, and
the number, u, of workers that we need to recruit for the public
worker pool, the problem of efficient worker notifying is to
select a subset of workers in W with high accuracies and low
latencies to send invitation messages, such that:

(1) the expected number, EðPtsðWÞÞ, of workers who
accept the invitations is greater than u, and

(2) the number of workers inW , to whom we send notifica-
tions, is minimized, where Ptsð:Þ is the probability of
workers to accept invitations and log in the worker
pool at timestamp ts.

In Definition 4, it is not trivial to estimate the probability,
PtsðWÞ, that a worker prefers to log in the platform at a given
timestamp, especially when we are lacking of his/her histori-
cal records. However, if we notify too many workers, it will
disturb them, and in theworst case drive them away from our
platform forever. To solve the EWN problem, we propose an
effective model to efficiently do the estimation in Section 4,
with whichwe select workerswith high acceptance probabili-
ties, Ptsð:Þ, to send invitation messages such that the worker
pool can be fulfilled quickly. Moreover, since we want to
invite workers with high acceptance probabilities, low
response times, and high accuracies, we define the worker
dominance below to select goodworker candidates.

Definition 5 (Worker Dominance). Given two worker candi-
dates wx and wy, we say worker wx dominates worker wy, if it
holds that: (1) PtsðwxÞ > PtsðwyÞ, (2) ax � ay, and (3) rx � ry,
where PtsðwjÞ is the probability that worker wj is available, and
ax and rx are the average accuracy and response time of worker
wx on his/her subscribed categories, respectively.

Then, our notification module will invite those offline
workers, wj, with high ranking scores (i.e., defined as the
number of workers dominated by worker wj [46]). We will
discuss the details of the ranking later in Section 4.

3 THE TASK SCHEDULER MODULE

The task scheduler module actively routes tasks to workers,
such that tasks can be completed with small latency and the
quality requirement of each task is satisfied. In order to
improve the throughput of the FROG platform, in this sec-
tion, we will estimate the difficulties of tasks and response
times (and accuracies as well) of workers, based on records
of recent answering. In particular, we will first present effec-
tive approaches to estimate worker and task profiles, and
then tackle the fast and reliable crowdsourcing task scheduling
(FROG-TS) problem, by designing two efficient heuristic-
based approaches (due to its NP-hardness).

3.1 Worker Profile Estimation

We first present the methods to estimate the category accu-
racy and the response time of a worker, which can be used

TABLE 2
Symbols and Descriptions

Symbol Description

C a set of task categories cl
T a set of tasks ti
W a set of workers wj

ti:c the category of task ti
qi a specific quality value of task ti
si the start time of task ti
fi the finish time of task ti
ajl the category accuracy of worker wj on tasks in category cl
rjl the response time of worker wj on tasks in category cl
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for finding good worker-and-task assignments in the FROG-
TS problem.

The Estimation of the Category Accuracy. In the FROG frame-
work, before each worker wj joins the system, he/she needs
to subscribe some task categories, cl, he/she would like to
contribute to. Then, workerwj will complete a set of qualifica-
tion testing tasks Tc ¼ ft1; t2; . . . ; tmg of category cl, by return-
ing his/her answers, Aj ¼ faj1; aj2; . . . ; ajmg, respectively.
Here, the system has the ground truth of the testing tasks in
Tc, denoted asG ¼ fg1; g2; . . . ; gmg.

Note that, at the beginning, we do not know the difficul-
ties of the qualification testing tasks. Therefore, we initially
treat all testing tasks with equal difficulty (i.e., 1). Next, we
estimate the category accuracy, �ajl, of worker wj on category
cl as follows:

�ajl ¼
PjTcj

i¼1 1ðaji ¼ giÞ
jTcj ; (2)

where 1ðvÞ is an indicator function (i.e., if v is true, we have
1ðvÞ ¼ 1; otherwise, 1ðvÞ ¼ 0), and jTcj is the number of quali-
fication testing tasks. Note that, ti:c ¼ cl; 8ti 2 Tc. Intuitively,
Eq. (2) calculates the percentage of the correctly answered
tasks (i.e., aji ¼ gi) byworkerwj (among all testing tasks).

In practice, the difficulties of testing tasks can be differ-
ent. Intuitively, if more workers provide wrong answers for
a task, then this task is more difficult; similarly, if a high-
accuracy worker fails to answer a task, then this task is
more likely to be difficult.

Based on the intuitions above, we can estimate the diffi-
culty of a testing task as follows. Assume that we have a set,
Wc, of workers wj (with the current category accuracies ajl)
who have passed the qualification test. Then, we give the
definition of the difficulty bi of a testing task ti below:

bi ¼
PjWcj

j¼1
�
1ðaji 6¼ giÞ � �ajl

�
PjWcj

j¼1 �ajl

; (3)

where 1ðvÞ is an indicator function, and jWcj is the number
of workers who passed the qualification test.

In Eq. (3), the numerator (i.e.,
PjWcj

j¼1
�
1ðaji 6¼ giÞ � �ajl

�
) com-

putes the weighted count of wrong answers by workers inWc

for a testing task ti. The denominator (i.e.,
PjWcj

j¼1 �ajl) is used to

normalize the weighted count, such that the difficulty bi of
task ti is within the interval ½0; 1	. The higher bi is, the more
difficult ti is. In turn, we can treat the difficulty bi of task ti as
a weight factor, and rewrite the category accuracy, �ajl, of
workerwj on category cl in Eq. (2) as

�ajl ¼
PjTcj

i¼1
�
1ðaji ¼ giÞ � bi

�
PjTcj

i¼1 bi

: (4)

The Update of the Category Accuracy. After worker wj passes
the qualification test of task category cl, he/she will be
assigned with tasks in that category. However, the category
accuracy of a worker may vary over time. For example, on
one hand, the worker may achieve more and more accurate
results, as he/she is more experienced in doing specific
tasks. On the other hand, the worker may become less accu-
rate, since he/she is tired after a long working day. To keep
tracking the varying accuracies of workers, we may update

their accuracy based on their performance on their latest k
tasks Tr in category cl.

Assume that the aggregated results for k latest real tasks in

Tr is fg01; g02; . . . ; g0kg, and answers provided by wj are fa0j1;
a0j2; . . . ; a

0
jkg, respectively. Then, we update the category accu-

racy ajl of workerwj on category cl as follows:

ajl ¼ uj � �ajl þ ð1� ujÞ �
Pk

i¼1 1ða0ji ¼ g0iÞ
k

; (5)

where uj ¼ jWcj
jWcjþk is a balance parameter to combine the perfor-

mance of each worker in testing tasks and real tasks. We can

use the aggregated results of the real tasks in the latest 10� 20
minutes to update theworkers’ category accuracywith Eq. (5).

The Estimation of the Category Response Time. In reality,
since different workers may have different abilities, skills,
and speeds, their response times could be different, where
the response time is defined as the length of the period from
the timestamp that the task is posted to the time point that
the worker submits the answer of the task to the server.

Furthermore, the response time of eachworkermay change
temporally (i.e., with temporal correlations). To estimate the
response time, we utilize the latest h response records of
worker wj for answering tasks in category cl, and apply the
least-squares method [29] to predict the response time, rjl, of
workerwj in a future timestamp. The input of the least-squares
method is the h latest (timestamp, response time) pairs. The
least-squares method can minimize the summation of the
squared residuals, where the residuals are the differences
between the recent h historical values and the fitted values pro-
vided by the model. We use the fitted line to estimate the cate-
gory response time in a future timestamp.

The value of h may affect the sensitiveness and stability
of the estimation of the category response time. Small hmay
lead the estimation sensitive about the response times of
workers, however, the estimated value may vary a lot.
Large h causes the estimation stable, but insensitive. In prac-
tice, we can set h as the number of responses of worker wj to
the tasks in category cl in recent 10 � 20 minutes.

3.2 Task Profile Estimation

In this section, we discuss the task difficulty, which may
affect the latency of accomplishing tasks.

The Task Difficulty. Some tasks in the crowdsourcing system
are in fact more difficult than others. In AMT [1], autonomous
workers pick tasks by themselves. As a consequence, difficult
tasks will be left without workers to conduct. In contrast, in
our FROG platform, the server can designedly assign/push
difficult tasks to reliable and low-latency workers to achieve
the task quality and reduce the time delays.

For a given task ti in category cl with R possible answer
choices (R ¼ 2, in the case of YES/NO tasks), assume that
jWij workers are assigned with this task. Since some workers
may skip the task (without completing the task), we denote gi

as the number of workers who skipped task ti, and Vi as the
set of received answers, where jVij þ gi ¼ jWij. Then, we can
estimate the difficulty di of task ti as follows:

di ¼ gi

jWij þ
jVij
jWij �

Entropyðti;ViÞ
MaxEntropyðRÞ þ �; (6)
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where � is a small constant representing the base difficulty
of tasks. Here, in Eq. (6), we have

Entropyðti;ViÞ ¼
XR

r¼1;Wi;r 6¼;
�
P

wj2Wi;r
ajlP

wj2Wi
ajl

log

P
wj2Wi;r

ajlP
wj2Wi

ajl

 !
;

(7)

MaxEntropyðRÞ ¼ R � � 1

R
� log 1

R

� �� �
¼ log ðRÞ; (8)

where Wi;r is the set of workers who select the r th possible
choice of task ti and jVij is the number of received answers.
Note that, when at the beginning no worker answers task ti,
we assume its entropy Entropyðti;ViÞ ¼ 0.

Discussions on the Task Difficulty. The task difficulty di in
Eq. (6) is estimated based on the performance of workersWi

on doing task ti. Those workers who skipped the task treat
tasks as being the most difficult (i.e., with difficulty equal to
1), whereas for those who completed the task, we use the
normalized entropy (or the diversity) of their answers to
measure the task difficulty.

Specifically, the first term (i.e., gi
jWij) in Eq. (6) indicates the

percentage of workers who skipped task ti. Intuitively,
when a task is skipped by more percentage of workers, it is
more difficult.

The second term in Eq. (6) is to measure the task difficulty

based on answers from those jVi j
jWi j percent of workers (who did

the task). Our observation is as follows. When the answers of
workers are spread more evenly (i.e., more diversely), it indi-
cates that it is harder to obtain a final convincing answer of the
task with high confidence. In this paper, to measure the diver-
sity of answers from workers, we use the entropy [39],
Entropyðti;ViÞ (as given in Eq. (7)), of answers, with respect to
the accuracies of workers. Intuitively, when a task is difficult
to complete, workers will get confused, and eventually select
diverse answers, which leads to high entropy value. Therefore,
larger entropy implies higher task difficulty. Moreover, we
also normalize this entropy in Eq. (6), that is, dividing it by the
maximum possible entropy value, MaxEntropyðRÞ (as given
in Eq. (8)).

For the subjective tasks, such as image labeling, transla-
tion and knowledge acquisition, we may use other data
mining or machine learning methods [14], [31] to estimate
their difficulties. For example, the number of words and the
level of words of a sentence can be used as features to esti-
mate its difficulty for workers to translate.

3.3 Hardness of the FROG-TS Problem

We prove that the FROG-TS problem is NP-hard, by reduc-
ing it from the multiprocessor scheduling problem (MSP) [20].

Theorem 3.1 (Hardness of the FROG-TS Problem). The
problem of FROG Task Scheduling (FROG-TS) is NP-hard.

Proof. We prove the lemma by a reduction from the multi-
processor scheduling problem. A multiprocessor schedul-
ing problem can be described as follows: Given a set J ofm
jobswhere job ji has length li and a number of n processors,
the multiprocessor scheduling problem is to schedule all
jobs in J to n processors without overlapping such that the
time of finishing all the jobs isminimized.

For a given multiprocessor scheduling problem, we can
transform it to an instance of FROG-TS problem as follows:
we give a set T ofm tasks and each task ti belongs to a dif-
ferent category ci and the specified accuracy is lower than
the lowest category accuracy of all the workers, which
means each task just needs to be answered by one worker.
For n workers, all the workers have the same response
time ri ¼ li for the tasks in category ci, which leads to the
processing time of any task ti is always ri no matter which
worker it is assigned to.

As each task just needs to be assigned to one worker,
this FROG-TS problem instance is to minimize the maxi-
mum completion time of task ti in T , which is identical
to minimize the time of finishing all the jobs in the given
multiprocessor scheduling problem. With this mapping
it is easy to show that the multiprocessor scheduling
problem instance can be solved if and only if the trans-
formed FROG-TS problem can be solved.

This way, we reduce MSP to the FROG-TS problem.
Since MSP is known to be NP-hard [20], FROG-TS is also
NP-hard, which completes our proof. tu
The FROG-TS problem focuses on completing multiple

tasks that satisfy the required quality thresholds, which
requires that each task is answered by multiple workers.
Thus, we cannot directly use the existing approximation
algorithms for the MSP problem (or its variants) to solve the
FROG-TS problem. Due to the NP-hardness of our FROG-
TS problem, in the next section, we will introduce an adap-
tive task routing approach with two worker-and-task sched-
uling algorithms, request-based and batch-based scheduling
approaches to efficiently retrieve the FROG-TS answers.

3.4 Adaptive Scheduling Approaches
In this section, we first estimate the delay probability of each
task. The higher the delay probability is, the more likely the
task will be delayed. Then we propose two adaptive sched-
uling strategies, request-based scheduling and batch-based
scheduling, to iteratively assign workers to the task with the
highest delay probability such that the maximum process-
ing time of tasks is minimized.

3.4.1 The Delay Probability

As mentioned in the second criterion of the FROG-TS prob-
lem (i.e., in Definition 3, we want to minimize the maximum
latency of tasks in T . In order to achieve this goal, we will
first calculate the delay probability, LðtiÞ, of task ti in T , and
then assign workers to those tasks with high delay probabil-
ities first, such that the maximum latency of tasks can be
greedily minimized.

We denote the current timestamp as ��. Let �i (¼ minf���
si; lig) be the time lapse of task ti and �max (¼ maxti2T �i) be the
current maximum time lapse and �rl be the average response

time of task ti in category cl. Then, d�max��i
�rl
e is the number of

more rounds for task ti to enlarge the maximum time lapse.
We denote P ðti;vkÞ as the probability of that the task ti will
not meet its accuracy requirement in a single round vk. As a
difficult task will result in evenly distributed answers accord-
ing to the definition of di in Eq. (6), a task ti having a larger di
will have a higher probability P ðti;vkÞ. Moreover, a task ti
with a higher specific quality qi will also have a higher proba-
bility P ðti;vkÞ. Then, we have the theorembelow.
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Theorem 3.2. We assume P ðti;vkÞ is positively related to the
difficulty di of task ti, which is

P ðti;vkÞ / di � qi:
Then, the delay probability LðtiÞ of task ti can be estimated by

LðtiÞ / ðdi � qiÞd
�max��i

�rl
e
; (9)

where di is the difficulty of task ti given by Eq. (6) and �i is the
time lapse of task ti.

Proof. Task ti will be delayed if it will not finish in the next
d�max��i

�rl
e rounds. Then, we have

LðtiÞ ¼Pfti is not finished in round vx1 ;vx2 ; . . . ;vxd�max��i
�rl

e
g

¼
Yd�max��i
�rl
e

k¼1
Pfti is not finished in round vxkg

¼
Yd�max��i
�rl
e

k¼1
P ðti;vxkÞ

/ðdi � qiÞd
�max��i

�rl
e
:

(10)

Eq. (10) holds since we assume the probability P ðti;vkÞ is
positively related to the difficulty and specific quality of ti.tu
Note that, in this work, we take two major factors: the

difficulty and specific quality of a task, into consideration to
build our framework and ignore other minor factors (e.g.,
spammers and copying workers). We will consider these
minor factors as our future work.

3.4.2 Request-Based Scheduling (RBS) Approach

With the estimation of the delay probabilities of tasks, we pro-
pose a request-based scheduling (RBS) approach. In this
approach, when a worker becomes available, he/she will
send a request for the next task to the server. Then, the server
calculates the delay probabilities of the on-going tasks on the
platform, and greedily return the task with the highest delay
probability to theworker.

Algorithm 1. GreedyRequest(W , T )

Input: A worker wj requesting for his/her next task and a set
T ¼ ft1; t2; . . . ; tvg of v uncompleted tasks

Output: Returned task ti
1 foreach task ti in T do
2 calculate the delay possibility value of ti with Eq. (9);
3 select one task ti with the highest delay probability;
4 if the expected accuracy of ti is higher than qi then
5 Remove ti from T ;
6 return ti;

The pseudo code of our request-based scheduling app-
roach, namely GreedyRequest, is shown in Algorithm 1. It
first calculates the delay probability of each uncompleted
task in T (lines 1-2). Then, it selects a suitable task ti with
the highest delay probability (line 3). If we find the expected
accuracy of task ti (given in Eq. (1)) is higher than the qual-
ity threshold qi, then we will remove task ti from T . Finally,
we return/assign task ti to worker wj, who is requesting
his/her next task.

The Time Complexity of RBS.We next analyze the time com-
plexity of the request-based scheduling approach, Greedy
Request, in Algorithm 1. We assume that each task has
received h answers. For each task ti, to compute its difficulty,
the time complexity is OðhÞ. Thus, the time complexity of
computing delay probabilities for all v uncompleted tasks is
given byOðv � hÞ (lines 1-2). Next, the cost of selecting the task
ti with the highest delay probability is OðvÞ (line 3). The cost
of checking the completeness for task ti and removing it from
T is given by Oð1Þ. As a result, the time complexity of our
request-based scheduling approach is given byOðv � hÞ.

3.4.3 Batch-Based Scheduling (BBS) Approach

Although the RBS approach can easily and quickly respond
to each worker’s request, it in fact does not have the control
on workers in this request-and-answer style. Next, we will
propose an orthogonal batch-based scheduling approach,
which assigns each worker with a list of suitable tasks in a
batch, where the length of the list is determined by his/her
response speed.

The intuition of our BBS approach is as follows. If we can
assign high-accuracy workers to difficult and urgent tasks
and low-accuracy workers with easy and not that urgent
tasks, then the worker labor will be more efficient and the
throughput of the platform will increase.

Algorithm 2. GreedyBatch(W , T )

Input: A set, T ¼ ft1; t2; . . . ; tmg, ofm unfinished tasks and a
set,W ¼ fw1; w2; . . . ; wng, of nworkers

Output: Assignment A ¼ fhti; wjig
1 A ;;
2 foreach task ti in T do
3 calculate the delay possibility value of ti with Eq. (9);
4 while T 6¼ ; andW 6¼ ; do
5 select task ti with the highest delay probability value;
6 remove ti from T ;
7 Wo  MinWorkerSetSelection(ti,W ,Wi);
8 ifWo 6¼ ; then
9 foreach wj 2Wo do
10 Insert hti; wji into A;
11 if wj cannot be assigned with more tasks then
12 Remove wj fromW ;
13 returnA;

Specifically, in each round, our BBS approach iteratively
picks a task with the highest delay probability (among all the
remaining tasks in the system), and then greedily selects a
minimum set of workers to complete this task. Algorithm 2
shows the pseudo code of the BBS algorithm, namely
GreedyBatch. In particular, since no worker-and-task pair is
assigned at the beginning, we initialize the assignment setA as
an empty set (line 1). Then, we calculate the delay probability
of each unfinished task (given in Eq. (9)) (lines 2-3). Thereafter,
we iteratively assignworkers for the next task ti with the high-
est delay probability (lines 4-6). Next, we invoke Algorithm
MinWorkerSetSelection, which selects a minimum set, Wo, of
workers who satisfy the required accuracy threshold of task ti
(line 7). If Wo is not empty, then we insert task-and-worker
pairs, hti; wji, into set A (lines 8-10). If each worker wi cannot
be assigned with more tasks, then we remove him/her from
W (lines 11-12). Here, we decide whether a worker wj can be
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assignedwithmore tasks, according to his/her response times
on categories, his/her assigned tasks, and the round interval
of the BBS approach. That is, if the summation of response
times of the assigned tasks is larger than the round interval,
then the worker cannot be assigned with more tasks; other-
wise, we can still assignmore tasks to him/her.

Minimum Worker Set Selection. In line 7 of Algorithm 2
above, we mentioned a MinWorkerSetSelection algorithm,
which selects a minimum set of workers satisfying the con-
straint of the quality threshold qi for task ti. We will discuss
the algorithm in detail, and prove its correctness below.

Before we provide the algorithm, we first present one
property of the expected accuracy of a task.

Lemma 3.1. Given a set of workers, Wi, assigned to task ti in
category cl, the expected accuracy of task ti can be calculated as
follows:

PrðWi; clÞ ¼PrðWi � fwjg; clÞ

þ ajl

 X
U

� Y
wo2U

aol

Y
wo2Wi�U�fwjg

ð1� aolÞ
�!

;

(11)

where U ¼Wi;dk2e
� fwjg and PrðWi; clÞ is defined in Eq. (1).

Proof. For a task ti in category cl, assume a set of kworkersWi

are assigned to it. As the definition of the expected accuracy
of task ti in Eq. (1) shows, for any subset V 0i 
Wi and

jVij � dk2e, when worker wj 2Wi is not in Vi, we can find an

addendA of� Y
wo2Vi

aol

Y
wo2Wi�Vi�wj

ð1� aolÞ
�
� ð1� ajlÞ;

in Eq. (1). As the Eq. (1) enumerates all the possible sub-

sets ofWi with more than dk2e elements, we can find a sub-

set V 0i ¼ Vi þ fwjg, which represents another addendA0 of

ajl

� Y
wo2V 0i�fwjg

aol

Y
wo2Wi�V 0i

ð1� aolÞ
�
;

in Eq. (1). Then, we have

AþA0 ¼
Y
wo2Vi

aol

Y
wo2Wi�Vi�wj

ð1� aolÞ:

After we combine all these kind of pairs of addends of
worker wj, we can obtain

PrðWi; clÞ

¼
Xk�1

x¼dk2e�1

X
W 0

i;x

 Y
wo2W 0i;x

aol

Y
wo2W 0i�W 0i;x

ð1� aolÞ
!

þ ajl

 X
U

� Y
wo2U

aol

Y
wo2Wi�U�fwjg

ð1� aolÞ
�!

¼ PrðW 0
i ; clÞ

þ ajl

 X
U

� Y
wo2U

aol

Y
wo2Wi�U�fwjg

ð1� aolÞ
�!

;

(12)

where W 0
i ¼Wi � fwjg and W 0

i;x is a subset of W 0
i with x

elements, and U ¼Wi;dk2e
� fwjg.Eq. (12) holds as k is

always odd to ensure the majority voting can get a final

result. Note that, the accuracy ajl of worker wj towards
task category cl is larger than 0.5. The reason is when ajl

is smaller than 0.5, we can always treat the answer of

worker wj to cl as the opposite answer, then the accuracy

may become a0jl ¼ 1� ajl > 0:5. tu
We can derive two corollaries below.

Corollary 3.1. For a task ti in category cl with a set of k assigned
workers Wi, if the category accuracy ajl of any worker wj 2Wi

increases, the expected accuracy PrðWi; clÞ of task ti will
increase (until reaching 1).

Proof. In Eq. (11), when the accuracy ajl of worker wj

increases, the first factor PrðWi � fwjg; clÞ will not be
affected, and the second factorwill increase. Note that, when
all the workers are 100 percent accurate, PrðWi� fwjg; clÞ ¼
1 and the second factor equals to 0, which leads to that the

expected accuracy stays at 1. Thus, the corollary is proved. tu
Corollary 3.2. For a task ti in category cl with a set of k assigned

workers Wi, if we assign a new worker wj to task ti, the
expected accuracy of task ti will increase.

Proof. With Lemma 3.1, we can see that when adding one
more worker to a task ti, the expected accuracy of task ti
will increase. In Eq. (3.1), the first factor PrðWi � fwjg; clÞ
is the expected accuracy of task ti before adding worker
wj. The second factor is larger than 0 as the accuracy ajl of
worker wj towards task category cl is larger than 0.5.
When ajl is smaller than 0.5, we can always treat the
answer of worker wj to cl as the opposite answer, then the
accuracy becomes a0jl ¼ 1� ajl > 0:5. tu
With Corollaries 3.1 and 3.2, to increase the expected accu-

racy of a task ti, we can use workers with higher category
accuracies or assign more workers to task ti. When the
required expected accuracy of a task ti is given, we can finish
task ti with a smaller number of high-accuracy workers. To
accomplish asmany tasks as possible, we aim to greedily pick
the least number ofworkers to finish each task iteratively.

Algorithm 3.MinWorkerSetSelection(ti,W ,Wi)

Input:A setW ¼ fw1; w2; . . . ; wng of available workers, a task
ti in category cl with a set of already assigned workers
Wi

Output: Aminimum set of workers assigned to task ti
1 Wo  Wi;
2 while PrðWo; clÞ < qi and jW �Woj > 0 do
3 choose a new worker wj with the highest accuracy ajl; W .

remove(wj);
4 Wo.add(wj);
5 if PrðWo; clÞ � qi then
6 returnWo �Wi;
7 else
8 return ;;

Algorithm 3 exactly shows the procedure of MinWorker
SetSelection, which selects a minimum set, Wo, of workers
to conduct task ti. In each iteration, we greedily select a
worker wj (who has not been assigned to task ti) with the
highest accuracy in the category of task ti, and assign work-
ers to task ti (lines 2-4). If such a minimumworker set exists,
we return the newly assigned worker set; otherwise,
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we return an empty set (lines 5-8). The correctness of Algo-
rithm 3 is shown below.

Lemma 3.2. The number of workers in the set Wo returned by
Algorithm 3 is minimum, ifWo exists.

Proof. Let set Wo be the returned by Algorithm 3 to satisfy
the quality threshold qi and worker wj is the last one
added to set Wo. Assume there is a subset of workers
W 0 
W such that jW 0j ¼ jWoj � 1 and PrðW 0; clÞ � qi.

Since each worker in Wo is greedily picked with the
highest current accuracy in each iteration of lines 2-4 in
Algorithm 3, for any worker, wk 2Wo will have higher

accuracy than anyworkerw0k 2W 0. As jW 0j ¼ jWo � fwjgj,
according to Corollary 3.1, PrðWo � fwjg; clÞ > PrðW 0; clÞ.
However, as wj is added to Wo, it means PrðWo � fwjg;
clÞ < qi. It conflicts with the assumption that PrðW 0;
clÞ � qi. Thus, setW

0 cannot exist. tu
The Time Complexity of BBS. To analyze the time complexity

of the batch-based scheduling approach, called GreedyBatch,
as shown in Algorithm 2, we assume that each task ti needs to
be answered by hworkers. The time complexity of calculating
the delay probability of a task is given by Oðm � hÞ (lines 2-3).
Since each iteration solves one task, there are at mostm itera-
tions (lines 4-13). In each iteration, selecting one task ti with
the highest delay probability requires OðmÞ cost (line 5). The
time complexity of the MinWorkerSetSelection procedure is
given byOðhÞ (line 7). The time complexity of assigningwork-
ers to the selected task ti is OðhÞ (lines 8-12). Thus, the overall
time complexity of the BBS approach is given bymaxðOðm2Þ;
Oðm � hÞÞ.

4 THE NOTIFICATION MODULE

In this section, we introduce the detailedmodel of the notifica-
tion module in our PROG framework (as mentioned in Sec-
tion 2), which is in charge of sending invitation notifications to
offline workers in order to maintain enough online workers
doing tasks. Since it is not a good idea to broadcast to all offline
workers, our notification module only sends notifications to
thoseworkerswith high probabilities of accepting invitations.

4.1 Kernel Density Estimation for Worker
Availability

In this section, we will model the availability of those (offline)
workers from historical records. The intuition is that, for each
worker, the patten of availability on each day is relatively sim-
ilar. For example, a worker may have the spare time to do
tasks, when he/she is on the bus to the school (or company) at
about 7 am every morning. Thus, wemay obtain their histori-
cal data about the timestamps they conducted tasks.

However, the number of historical records (i.e., sample
size) for each worker might be small. In order to accurately
estimate the probability of any timestamp that a worker is
available, we use a non-parametric approach, called kernel
density estimation (KDE) [37], based on random samples (i.e.,
historical timestamps that the worker is available).

Specifically, for a worker wj, let Ej ¼ fe1; e2; . . . ; eng be a
set of n active records that worker wj did some tasks, where
event ei (1 � i � n) occurs at timestamp tsi. Then, we can
use the following KDE estimator to compute the probability
that worker wj is available at timestamp ts

fðtsjEj; hÞ ¼ 1

nh

Xn
i¼1

K
ts� tsi

h

� �
;

where e is the event thatworkerwj is available andwill accept
the invitation at a given timestamp ts,Kð�Þ is a kernel function
(here, we use Gaussian kernel function KðuÞ ¼ 1ffiffiffiffi

2p
p e�u

2=2),

and h is a scalar bandwidth parameter for all events inE. The

bandwidth of the kernel is a free parameter and exhibits a

strong influence on the estimation. For simplicity, we set the

bandwidth following a rule-of-thumb [40] as follows:

h ¼
� 4ŝ5

3n

�1
5 ¼ 1:06ŝn�1=5; (13)

where ŝ is the standard deviation of the samples. The rule
works well when density is close to being normal, which is
however not true for estimating the probability of workers at
a given timestamp ts. However, adapting the kernel band-
width hi to each data sample ei may overcome this issue [10].

Inspired by this idea, we select k nearest neighbors of
event ei (here, we consider neighbors by using time as mea-
sure, instead of distance), and calculate the adaptive band-
width hi of event ei with ðkþ 1Þ samples using Eq. (13),
where k is set to b � n (b is a ratio parameter). Afterwards,
we can define the adaptive bandwidth KDE as follows:

fðtsjEjÞ ¼ 1

n

Xn
i¼1

K
ts� tsi

hi

� �
: (14)

4.2 Smooth Estimator

Up to now, we have discussed the adaptive kernel density
approach to estimate the probability that a worker is avail-
able, based on one’s historical records (samples). However,
some workers may just register or rarely accomplish tasks,
such that his/her historical events are not available or enough
to make accurate estimations, which is the “cold-start” prob-
lem that often happens in the recommendation system [38].

Inspired by techniques [38] used to solve such a cold-start
problem in recommendation systems and the influence
among friends [13] (i.e., friends tend to have similar behavior
patterns, such as the online time periods), we propose a
smooth KDE model (SKDE), which combines the individual’s
kernel density estimator with related scalemodels. That is, for
each worker, we can use historical data of his/her friends to
supplement/predict his/her behaviors.

Here, our FROG platform is assumed to have the access to
the friendship network of each worker, according to his/her
social networks (such as Facebook, Twitter, and WeChat). In
our experiments of this paper, our FROG platform used data
from theWeChat network.

Specifically, we define a smooth kernel density estima-
tion model as follows:

PSKDEðtsjEj;EÞ ¼
XS
s¼1

asfðtsjEsÞ; (15)

where a1;a1; . . . ;as are non-negative smoothing factors with

the property of
PS

s¼1 as ¼ 1, E is the entire historical events

of all the workers, and fðtsjEsÞ is the sth scaling density esti-

mator calculated on the subset events Es.
For a smoothKDEmodel with S (> 2) scaling density esti-

mators, the first scaling density estimator can be the basic
individual kernel density estimator with E1 ¼ Ej and the Sth
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scaling density estimator can be the entire population density
estimator with Es ¼ E. Moreover, since our FROG platform
can obtain the friendship network of each worker (e.g., Face-
book, Twitter, and WeChat), after one registers with social
media accounts, we can find each worker’s k-step friends.
This way, for the intermediate scaling density estimators
s ¼ 2; . . . ; S � 1, we can use different friendship scales, such
as the records of the 1-step friends, 2-step friends, ...,
ðS � 2Þ-step friends of worker wi. According to the famous
Six degrees of separation theory [7], S is not larger than 6.
However, in practice, we in fact can only use 1-step or 2-step
friends, as the intermediate scaling density estimators may
involve too many workers of when S is too large. Alterna-
tively, other relationship can also be used to smooth the KDE
model, such as the location information of workers. One pos-
sible variant is to classify theworkers based on their locations,
as workers in close locations may work or study together
such that their time schedulesmay be similarwith each other.

To train the SKDE model, we need to set proper values
for smoothing factors as. We use the latest event records as
validation data Ev (here jEvj ¼ n), and other history records
as the training data Eh. Specifically, for each event ek in Ev,
we have the estimated probability as follows:

P ðtskjEh;aÞ ¼ PSKDEðtskjEh;aÞ ¼
XS
s¼1

asfðtskjEsÞ;

where S is the number of scaling density estimators. Then,
to tune the smoothing factors, we use the Maximum Likeli-
hood Estimation (MLE) with log-likelihood as follows:

â ¼ argmaxalog
�Yn
k¼1

P ðtskjEh;aÞ�: (16)

However, Eq. (16) is not trivial to solve, thus, we use EM
algorithm to calculate its approximate result.

We initialize the smoothing factors as as ¼ 1=S for
s ¼ 1; 2; . . . ; S. Next, we repeat Expectation-step and Maxi-
mization-step, until the smoothing factors converge.

Expectation Step.Weadd a latent parameterZ ¼ fz1; z2; . . . ;
zSg, and its distribution on tsk isQkðZÞ, then we can estimate
QkðZÞ as follows:

Qt
kðzsjatÞ ¼ P ðzsjtsk;Eh;atÞ ¼ at

s � fðtskjEsÞPS
i¼1 a

t
i � fðtskjEiÞ ;

where fð�Þ is calculated with Eq. (14).
Maximization Step. Based on the expectation result of the

latent parameter Z, we can calculate the next smoothing fac-
tor values atþ1 with MLE as follows:

atþ1 ¼ argmaxa
Xn
k¼1

XS
s¼1

Qt
kðzsÞlog

�P ðstk; zsjatÞ
Qt

kðzsÞ
�

¼ argmaxa
Xn
k¼1

XS
s¼1

Qt
kðzsÞlog

�at
s � fðtskjEsÞ
Qt

kðzsÞ
�
;

where fð�Þ is calculated with Eq. (14).

4.3 Solving of the Efficient Worker Notifying
Problem

As given in Definition 4, our EWN problem is to select a
minimum set of workers with high probabilities to accept
invitations, to whom we will send notifications.

Formally, given a trained smooth KDE model and a time-
stamp ts, assume that we want to recruit umore workers for
the FROG platform. In the EWN problem (in Definition 4),
the acceptance probability PtsðwjÞ of worker wj can be esti-
mated by Eq. (15).

Next, with Definition 5, we can sort workers, wj, based
on their ranking scores RðwjÞ (e.g., the number of workers
dominated by each worker) [46]. Thereafter, we will notify
top-vworkers with the highest ranking scores.

The pseudo code of selecting worker candidates is shown
in Algorithm 4. We first initialize the selected worker set,
Wn, with an empty set (line 1). Next, we calculate the rank-
ing scores of each worker (e.g., the number of other workers
can be dominated with the Definition 5) (lines 2-3). Then,
we iteratively pick workers with the highest ranking scores
until the selected workers are enough or all workers have
been selected (lines 4-8). Finally, we return the selected
worker candidates to send invitation notifications (line 9).

The Time Complexity. To compute the ranking scores, we
need to compare every two workers, whose time complexity
is Oðn2Þ. In each iteration, we select one candidate, and
there are at most n iterations. Assuming that n workers are
sorted by their ranking scores, lines 4-8 have the time com-
plexity Oðn � log ðnÞÞ. Thus, the time complexity of Algo-
rithm 4 is given by Oðn2Þ.

Discussions on Improving the EWNEfficiency. To improve the
efficiency of calculating the ranking scores of workers, we
may utilize a 3D grid index to accelerate the computation,
where 3D includes the acceptance probability, response time,
and accuracy. Each worker is in fact a point in a 3D space w.r.
t. these 3 dimensions. If a worker wj dominates a grid cell gcx,
then all workers in cell gcx are dominated by wj. Similarly, if
worker wj is dominated by the cell gcx, then all the workers in
gcx cannot be dominated by wj. Then, we can compute the
lower/upper bounds of the ranking score for each worker,
and utilize them to enable fast pruning [46].

Algorithm 4.WorkerNotify(W , T )

Input: A set, W ¼ fw1; w2; . . . ; wng, of offline workers, the
expected number, u, of acceptance workers, and the
current timestamp ts

Output:A set,Wn, of workers to be invited
1 Wn ¼ ;;
2 foreach worker wj inW do
3 calculate the ranking score RðwjÞ of wj;
4 while u > 0 and jW j > 0 do
5 select one worker wj with the highest ranking score inW ;
6 W ¼W � fwjg;
7 Wn.add(wj);
8 u ¼ u� PtsðwjÞ
9 returnWn;

5 EXPERIMENTAL STUDY

5.1 Experimental Methodology

Data Sets for Experiments on Task Scheduler Module. We use
both real and synthetic data to test our task scheduler mod-
ule. We first conduct a set of comparison experiments on
the real-world crowdsourcing platform, gMission [12],
where workers do tasks and are notified via WeChat [5],
and evaluate our task scheduler module on 5 data sets [2].
Tasks in each data set belong to the same category. For each
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experiment on the real platform, we use 100 tasks for each
data set (category). We manually label the ground truth of
tasks. To subscribe one category, each worker is required to
take a qualification test consisting of 5 testing questions. We
uniformly generate quality threshold for each task within
the range [0.8, 0.85]. Below, we give brief descriptions of the
5 real data sets.

1) Disaster Events Detection (DED): DED contains a set of
tasks, which ask workers to determine whether a tweet
describes a disaster event. For example, a task can be “Just
happened a terrible car crash” and workers are required to
select “Disaster Event” or “Not Disaster Event”.

2) Climate Warming Detection (CWD): CWD is to deter-
mine whether a tweet considers the existence of global
warming/climate change or not. The possible answers are
“Yes”, if the tweet suggests global warming is occurring;
otherwise, The possible answers are “No”. One tweet exam-
ple is “Global warming. Clearly.”, and workers are expected
to answer “Yes”.

3) Body Parts Relationship Verification (BPRV): In BPRV,
workers should point out if certain body parts are part of
other parts. Questions were phrased like: “[Part 1] is a part
of [part 2]”. For example, “Nose is a part of spine” or “Ear is
a part of head.” Workers should say “Yes” or “No” for this
statement.

4) Sentiment Analysis on Apple Incorporation (SAA): Work-
ers are required to analyze the sentiment about Apple,
based on tweets containing “#AAPL, @apple, etc”. In each
task, workers are given a tweet about Apple, and asked
whether the user is positive, negative, or neutral about
Apple. We used records with positive or negative attitude
about Apple, and asked workers to select “positive” or
“negative” for each tweet.

5)App SearchMatch (ASM): InASM,workers are required to
view a variety of searches for mobile Apps, and determine if
the intents of those searches are matched. For example, one
short query is “music player”; the other one is a longer one
like “I would like to download an App that plays themusic on
the phone frommultiple sources like Spotify and Pandora and
my library.” If the two searches have the same intent, workers
should select “Yes”; otherwise, they should select “No”.

For synthetic data, we simulate crowd workers based on
the observations from real platform experiments. Specifi-
cally, in experiments on the real platform, we measure the
average response time, �rjl, of worker wj on category cl, the
variance of the response time s2

jl, and the category accuracy
ajl. Then, to generate a worker w0j in the synthetic data set,
we first randomly select one worker wj from the workers in
the real platform experiments, and produce his/her
response speed r0jl on category cl following a Gaussian dis-
tribution r0jl � Nð �rjl; s2

jlÞ, where �rjl and s2
jl are the average

and variance of the response time of worker wj. In addition,
we initial the category accuracy a0jl of worker w0j as that of
the worker wj. Moreover, we uniformly generate required
number of tasks by sampling from the real tasks. Table 3
depicts the parameter settings in our experiments on syn-
thetic datasets, where default values of parameters are in
bold font. In each set of experiments, we vary one parame-
ter, while setting other parameters to their default values.

Data Sets for Experiments on Notification Module.To test our
notification module in the FROG framework, we utilizeHiggs
Twitter Dataset [16]. The Higgs Twitter Dataset is collected for
monitoring the spreading process on the Twitter, before, dur-
ing, and after the announcement of the discovery of a new
particle with features of the elusive Higgs boson on July 4th,
2012. Themessages posted on the Twitter about this discovery
between July 1st and 7th, 2012 are recorded. There are 456,626
user nodes and 14,855,842 edges (friendship connections)
between them. In addition, the data set contains 563,069 activ-
ities. Each activity happens between two users and can be
retweet, mention, or reply. We initialize the registered work-
ers on our platform with users in the Higgs Twitter Dataset
(and their relationship on the Twitter). What is more, the
activities in the data set is treated as online records of workers
on the platform. The reason is that only when a user is free,
he/she canmake activities on Twitter.

Competitors and Measures. For the task scheduler module,
we conduct experiments to test our two adaptive scheduling
approaches, request-based (RBS) and batch-based scheduling
approaches. We select the task assigner of iCrowd framework
[17] as a competitor (iCrowd), which iteratively resolves a task
with a set of k availableworkers having themaximumaverage
accuracy in the current situation. Here k is a requester-speci-
fied parameter and we configure it to 3 following its setting in
[17]. In addition, we compare them with a random method,
namely RANDOM, which randomly routes tasks to workers,
and a fast-worker greedy method, namely fGreedy, which
greedily pick the fastest workers to finish the task with the
highest delay possibility value. We hire 70 workers from the
WeChat platform to conduct the experiments. Table 4 shows
the statistics of category accuracies and category response
times of top 5workers, who conducted themost tasks.

For the notification module, we conduct experiments to
compare our smooth KDEmodel with our KDEmodel with-
out smoothing and a random method, namely Random,
which randomly selects workers. Moreover, we also com-
pare our approach with a simple method, namely Nearest
Worker Priority (NWP), which selects workers with the most
number of historical records within the u-minute period
before or after the given timestamp in previous dates. Here,
we use u ¼ 15, as it is sufficient for a worker to response the

TABLE 3
Experimental Settings

Parameters Values

the number of categories l 5, 10, 20, 30, 40
the number of tasksm 1000, 2000, 3000, 4000, 5000
the number of workers n 100, 200, 300, 400, 500
the range of quality [0.75, 0.8], [0.8, 0.85], [0.85, 0.9], [0.9, 0.95]
threshold ½q�; qþ	

TABLE 4
Statistics of Workers

Category Accuracy / Response Time

ID DED CWD BPRV SAA ASM

42 0.90/17.78 0.91/13.12 0.96/4.56 0.96/11.45 0.87/10.33
57 0.94/21.25 0.94/14.52 0.99/4.41 0.97/13.82 0.92/12.48
134 0.78/15.79 0.83/10.51 0.94/5.15 0.87/11.97 0.89/11.29
153 0.65/24.06 0.74/12.08 0.63/8.53 0.91/16.75 0.87/ 9.79
155 0.83/19.97 0.95/13.04 0.92/5.03 0.88/7.37 0.93/14.38
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invitation. For each predicted worker, if he/she has activi-
ties within the time period from the the target timestamp to
15 minutes later, we treat that it is a correct prediction. At
timestamp ts, we denote NcðtsÞ as the number of correct
predictions, NtðtsÞ as the number of total predictions and
NaðtsÞ as the number of activities that really happened.

For experiments on the task scheduler module, we report
maximum latencies of tasks and average task accuracies, for
both our approaches and the competitormethod.We also eval-
uate the final results through the Dawid and Skene’s expecta-
tion maximization method [15], [24]. Due to space limitation,
please refer to Appendix B, available in the online supplemen-
tal material, for more details. For experiments on the notifica-

tion module, we present the precision (¼ NcðtsÞ
NtðtsÞ) and recall

(¼ NcðtsÞ
NaðtsÞ) of all tested methods. Our experiments were run on

an Intel Xeon X5675 CPUwith 32GBRAM in Java.

5.2 Experiments on Real Data

The Performance of the Task Scheduler Module on Real Data.
Fig. 2 shows the results of experiments on our real platform

about the task scheduler module of our framework. For the
maximum latencies shown in Fig. 2a, our two approaches can
maintain lower latencies than the baseline approach, RAN-
DOM. Specifically, BBS can achieve a much lower latency,
which is at most half of that of RANDOM. fGreedy is better
than RANDOM, however, still needs more time to finish tasks
than our BBS. As iCrowd assigns k (=3) workers to each task,
it can achieve lower latencies than out BBS in DED, CWD and
ASM but higher latencies than our BBS in BPRV and SAA. For
the accuracies shown in Fig. 2b, our two approaches achieve
higher accuracies than RANDOM. Moreover, the accuracy of
BBS is higher than that of RBS. The reason is that, BBS can
complete the most urgent tasks with minimum sets of work-
ers, achieving the highest category accuracies. In contrast, RBS
is not concerned with the accuracy, and just routes available
workers to tasks with the highest delay probabilities. Thus,
RBS is not that effective, compared with BBS, to maintain a
low latency. As the required accuracies are satisfied when
assigning tasks to workers, BBS, RBS, RANDOM and fGreedy
achieve close accuracies to each other. However, iCrowd just
achieves relatively low accuracy in CWD as it assigns only k
(=3) workers to each task and the average accuracy of workers
in CWD is low.

The Performance of Notification Module on Real Data. To show
the effectiveness of our smooth KDE model, we present the
recall and precision of our model compared with KDE, NWP
and Random, by varying the number of prediction samples
from 5 to 10 percent of the entire population. As shown in
Fig. 3a, our smoothKDEmodel can achieve higher recall scores
than the other three baseline methods. In addition, when we

predict with more samples, the advantage of our smooth KDE
model is more obvious w.r.t. the recall scores. The reason is
that our smooth KDE model can utilize the influence of the
friends, which is more effective when we predict with more
samples. Similarly, in Fig. 3b, smooth KDE model can obtain
the highest precision scores among all testedmethods.

5.3 Experiments on Synthetic Data

Effect of the Number, m, of Tasks. Fig. 4 shows the maximum
latency and average accuracy of five approaches, RBS, BBS,
iCrowd, RANDOM and fGreedy, by varying the number, m,
of tasks from 1K to 5K, where other parameters are set to
their default values. As shown in Fig. 4a, withmore tasks (i.e.,
largerm values), all the five approaches achieve higher maxi-
mum task latency. This is because, if there are more tasks,
each task will have relatively fewer workers to assign, which
prolongs the latencies of tasks. RANDOM always has higher
latency than our RBS approach, followed by BBS. fGreedy can
achieve lower latency than RBS approach, but still higher
than BBS, as fGreedy is still a batch-based algorithm but
greedily picking fastest workers. Here, the maximum latency
of BBS remains low, and only slightly increases with more
tasks. The reason has been discussed in Section 5.2. In addi-
tion, iCrowd achieves low latency when the number of tasks
is lower than 2K but achieve much higher latency than
fGreedy, BBS and RBSwhenm increases to 3K and above.

Fig. 4b illustrates the average accuracies of five approaches,
with differentm values. Since BBS always chooses aminimum
set of workers with the highest category accuracies, in most
cases, the task accuracies of BBS are higher than the other three
approaches. fGreedy can achieve slightly higher accuracy than
RBS, as fGreedy can select a set of workers that meets the
required accuracy threshold of the task with the highest delay
probabilitywhile RBS can only determine to assign the current
available worker to a suitable task. Nonetheless, from the
figure, RBS and BBS approaches can achieve high task accura-
cies (i.e., 89% � 94%). We also conducted the experiments
with iCrowd having different parameter k on varying number
of tasks. Due to space limitation, please refer to Appendix C,
available in the online supplementalmaterial, for the details.

Fig. 2. The performance of task scheduler module on real data. Fig. 3. The performance of the notification module on real data.

Fig. 4. Effect of the number of tasksm.
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Effect of the Number, n, of Workers. Fig. 5 shows the experi-
mental results, where the number, n, of workers changes
from 100 to 500, and other parameters are set to their default
values. For the maximum latencies shown in Fig. 5a, when
the number, n, of worker increases, the maximum latencies
of five algorithms decrease. This is because, with more
workers, each task can be assigned with more workers
(potentially with lower latencies). Since the quality thresh-
olds of tasks are not changing, with more available workers,
the maximum latencies thus decrease. Similarly, BBS can
maintain a much lower maximum latency than the other
four algorithms. For the average accuracies in Fig. 5b, our
BBS algorithm can achieve high average accuracies (i.e.,
87% � 93%).

Effect of the Range of the Quality Threshold ½q�; qþ	. Fig. 6
shows the performance of five approaches, where the range,

½q�; qþ	, of quality thresholds, qi, increases from ½0:75; 0:8	 to
½0:9; 0:95	, and other parameters are set to their default val-
ues. Specifically, as depicted in Fig. 6a, when the range of
the quality threshold increases, the maximum latencies of
BBS, RBS, RANDOM and fGreedy also increase. The reason
is that, with higher quality threshold qi, each task needs
more workers to be satisfied (as shown by Corollary 3.2).
Similarly, BBS can achieve much lower maximum latencies
than that of RBS, fGreedy and RANDOM. Further, RBS is
better than RANDOM but worse than fGreedy, w.r.t. the
maximum latency. Since iCrowd always assigns k (=3)
workers to each task, the specific quality thresholds do not
affect it w.r.t. the maximum latency.

In Fig. 6b, when the range of qi increases, the average
accuracies of BBS, RBS, RANDOM and fGreedy also
increase. This is because, when qi increases, each task needs
more workers to satisfy its quality threshold (as shown by
Corollary 3.2), which makes the average accuracies of tasks
increase. Similar to previous results, our two approaches,
BBS and RBS, can achieve higher average accuracies than
RANDOM. fGreedy can achieve close accuracy to BBS. Sim-
ilarly, the specific quality thresholds do not affect it w.r.t.
the average accuracies.Effect of the Number, l, of Categories.
Fig. 7 varies the number, l, of categories from 5 to 40, where
other parameters are set by default. From Fig. 7a, we can

see that, our RBS and BBS approaches can both achieve low
maximum latencies, with different l values. Similar to previ-
ous results, BBS can achieve the lowest maximum latencies
among three approaches, and RBS is better than RANDOM.
Moreover, in Fig. 7b, with different l values, the accuracies
of BBS remain high (i.e., 92% � 94%), and are better than
that of the other four algorithms.

In summary, our task scheduler module can achieve
results with low latencies and high accuracies on both real
and synthetic datasets. Especially, our BBS approach is the
best one among all the tested scheduling approaches. More-
over, verified through the experiments on the tweet dataset,
our smooth KDE model can accurately predict the accep-
tance probabilities of workers, and achieve higher precision
and recall scores than three baseline methods: KDE, Ran-
dom and NWP.

6 RELATED WORK

Crowdsourcing has been well studied by different research
communities (e.g., the database community), and widely
used to solve problems that are challenging for computer
(algorithms), but easy for humans (e.g., sentiment analysis
[35] and entity resolution [43]). In the databases area,
CrowdDB [18] and Qurk [33] are designed as crowdsourc-
ing incorporated databases; CDAS [32] and iCrowd [17] are
systems proposed to achieve high quality results with
crowds; gMission [12] and MediaQ [27] are general spatial
crowdsourcing systems that extend crowdsourcing to the
real world. Due to intrinsic error rates of humans, crowd-
sourcing systems always focus on achieving high-quality
results with minimum costs. To guarantee the quality of the
results, each task can be answered by multiple workers, and
the final result is aggregated from answers with voting [11],
[17] or learning [25], [32] methods. To manage the budget,
existing studies [26], [42] focused on designing budget-opti-
mal task allocation methods to finish tasks with minimum
number of workers with accuracy guarantees and proposed
quality-based pricing mechanisms for workers with hetero-
geneous quality, which do not take the speeds of workers
and the latencies of tasks into consideration directly.

Due to the diversity of the workers and their autonomous
participation style in existing crowdsourcing markets (e.g.,
AmazonMechanical Turk [1] and Crowdflower [3]), the qual-
ity and completion time of crowdsourcing tasks cannot
always be guaranteed. For example, in AMT, the latency of
finishing tasks may vary from minutes to days [18], [28].
Some difficult tasks are often ignored by workers, and left
uncompleted for a long time. Recently, several studies [19],
[22], [36], [41] focused on reducing the completion time of
tasks. In [36], [41], the authors designed algorithms to reduce
the latencies of tasks for specific jobs, such as rating and

Fig. 5. Effect of the number of workers n.

Fig. 6. Effect of the specific quality value range ½q�; qþ	.

Fig. 7. Effect of the number of categories l.
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filtering records, and resolve the entities with crowds. The
proposed techniques for specific tasks, however, cannot be
used for general crowdsourcing tasks, which is the target of
our FROG framework. In addition, the cognitive bias of work-
ers may affect the aggregated results, which is considered in
the idea selection problem [45] by providing the reference
ideas. The cognitive bias of workers can be another dimension
to handle in our future work. For example, we can model the
cognitive bias of workers from their historical answers, then
use the cognitive bias tomore accurately infer the final results.

Gao et al. [19] leveraged the pricing model from prior
studies, and developed algorithms to minimize the total
elapsed time with user-specified monetary constraint or to
minimize the total monetary cost with user-specified dead-
line constraint. They utilized the decision theory (specifi-
cally, Markov decision processes) to dynamically modify
the prices of tasks. Daniel et al. [22] proposed a system,
called CLAMShell, to speed up crowds in order to achieve
consistently low-latency data labeling. They analyzed the
sources of labeling latency. To tackle the sources of latency,
they designed several techniques (such as straggler mitiga-
tion to assign the delayed tasks to multiple workers, and
pool maintenance) to improve the average worker speed
and reduce the worker variance of the retainer pool.

Recently, Goel, Rajpal and Mausam [21] utilize the
machine learning methods to study the relationship of the
speed, budget and quality of crowdsourcing tasks. They
proposed a learning-to-optimizing protocol to simulta-
neously optimize the budget allocation during each round
while minimizing the task latency of a batch of binary tasks
(having 0/1 response) and to maximizing the qualities of
tasks in open labor markets (e.g., AMT).

Different from the existing studies [8], [9], [19], [22], [36],
[41], our FROG framework is designed for general crowd-
sourcing tasks (rather than specific tasks), and focuses on
both reducing the latencies of all tasks and improving the
accuracy of tasks(instead of either latency or accuracy). In
our FROG framework, the task scheduler module actively
assigns workers to tasks with high reliability and low
latency, which takes into account response times and cate-
gory accuracies of workers, as well as the difficulties of tasks
(not fully considered in prior studies). We also design two
novel scheduling approaches, request-based and batch-
based scheduling. Different from prior studies [17], [22] that
simply filtered out workers with low accuracies, our work
utilizes all possible worker labors, by scheduling difficult/
urgent tasks to high-accuracy/fast workers and routing
easy and not urgent tasks to low-accuracy workers.

Moreover, Bernstein et al. [8] proposed the retainer
model to hire a group of workers waiting for tasks, such
that the latency of answering crowdsourcing tasks can be
dramatically reduced. Bernstein et al. [9] also theoretically
analyzed the optimal size of the retainer model using
queueing theory for realtime crowdsourcing, where crowd-
sourcing tasks come individually. These models may either
increase the system budget or encounter the scenario where
online workers are indeed not enough for the assignment
during some period. In contrast, with the help of smart
devices, our FROG framework has the capability to invite
offline workers to do tasks, which can enlarge the public
worker pool, and enhance the throughput of the system. In

particular, our notification module in FROG can contact
workers who are not online via smart devices, and intelli-
gently send invitation messages only to those available
workers with high probabilities. Therefore, with the new
model and different goals in our FROG framework, we can-
not directly apply techniques in previous studies to tackle
our problems (e.g., FROG-TS and EWN).

7 CONCLUSION

The crowdsourcing has played an important role in many
real applications that require the intelligence of human
workers (and cannot be accurately accomplished by com-
puters or algorithms), which has attracted much attention
from both academia and industry. In this paper, inspired by
the accuracy and latency problems of existing crowdsourc-
ing systems, we propose a novel fast and reliable crowdsourc-
ing (FROG) framework, which actively assigns workers to
tasks with the expected high accuracy and low latency
(rather than waiting for autonomous unreliable and high-
latency workers to select tasks). We formalize the FROG
task scheduling (FROG-TS) and efficient worker notifying
(EWN) problems, and proposed effective and efficient
approaches (e.g., request-based, batch-based scheduling,
and smooth KDE) to enable the FROG framework. Through
extensive experiments, we demonstrate the effectiveness
and efficiency of our proposed FROG framework on both
real and synthetic data sets.
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