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Abstract—Nowadays, the locations and contexts of users are
easily accessed by mobile advertising brokers, and the brokers
can send customers related location-based advertisement. In this
paper, we consider a location-based advertising problem, namely
maximum utility advertisement assignment (MUAA) problem,
with the estimation of the interests of customers and the contexts
of the vendors, we want to maximize the overall utility of ads
by determining the ads sent to each customer subject to the
constraints of the capacities of customers, the distance ranges
and the budgets of vendors. We prove that the MUAA problem is
NP-hard and intractable. Thus, we propose one offline approach,
namely the reconciliation approach, which has an approximation
ratio of (1 − ε) · θ, where θ = min( a1

nc
1
, a2
nc
2
, ..., am

nc
m
), and nc

i is
the larger value between the number of valid vendors and the
capacity ai of customer ui. Experiments on real data sets confirm
the efficiency and effectiveness of our proposed approach.

I. INTRODUCTION

Nowadays, location-based mobile advertising (LBA) can

pinpoint the potential customers’ locations and provide

location-based advertisement on their mobile devices. LBA

has drawn much attention from industry (e.g., MobileAds [3]).

Specifically, in LBA, vendors create campaigns on the broker

system with the specified information of ads and budgets

to cover the ad fee of the broker. Then, the broker system

sends LBA ads to potential customers based on their current

locations, profiles (e.g., occupation) and preferences (e.g.,

interests) with a goal to increase the influence of the vendors

and lure in interested customers. However, it is difficult to push

ads to the most suitable customers with the limited budget such

that the overall utility of the ads is maximized as the inherent

complexity of the problem and the hardness of estimating the

utility of each ad.

Under this background, in this paper, we will consider

a practical problem, namely maximum utility advertisement
assignment (MUAA), which pushes ads to suitable customers

to maximize the overall utility subject to the constraints

of distance ranges, capacities of customers and the limited

budget. Here, the utility of an ad sent to a customer is the

measure of its effect on attracting the customer to visit the

shops of the ad owner.

Existing studies in LBA focus on investigating the customer

attitudes [5], analyzing the business models [6] and proposing

approaches to solve the continuous vendor selection problem

[12]. However, no existing works studied designing a good

LBA ad strategy to match the vendors and customers having

budget-constrained vendors with multiple ad types to select.

In this paper, we first prove that our MUAA problem is

NP-hard. As a result, the MUAA problem is not tractable.

Therefore, in order to efficiently handle the MUAA problem,

we proposed an approximate offline algorithm, namely the

reconciliation approach, in Sections III. We conducted experi-

ments on real data sets to show the efficiency and effectiveness

of our approach in Section IV.

II. PROBLEM DEFINITION

Assume that customers and vendors are depicted with a set

of tags, such as “fast foods”, “sport shoes” and “electronic

devices”. Let Ψ = {g1, g2, ..., gw} be a universe of w tags.

Definition 1. (Spatial Customers) Let Uϕ = {u1, u2, ..., um}
be a set of m customers at timestamp ϕ. Each customer, ui,
is at location l(ui, ϕ) at timestamp ϕ with a limited number

ai of the received ads. Moreover, customer ui has a vector ψi
of his/her interests on the tags.

Definition 2. (Spatial Vendors) Let Vϕ = {v1, v2, ..., vn} be

a set of n spatial vendors at timestamp ϕ. Each spatial vendor

vj is located at l(vj), specifies a circular area of radius rj
centered at l(vj), and provides a limited budget Bj to support

its ads. Also, a tag vector ψj is specified for depicting the

characteristics of the vendor.

The vector ψj reflects the similarities of the vendor on the

tags. Any element ψ
(k)
j ∈ ψj is in the range [0, 1] and depicts

the relevance degree of vendor vj for the tag gk.

Definition 3. (Ad Types) Let T = {τ1, τ2, ..., τq} be a set

of q types of ads. For each ad type τk, it costs ck and has a

utility effectiveness βk.

Definition 4. (Ad Assignment Instance Set) An ad assignment

instance set, donated by I, is a set of triples in the form

〈ui, vj , τk〉, where each customer ui ∈ U is assigned with

an ad of a vendor vj ∈ V in a type τk ∈ T .

For an ad assignment instance 〈ui, vj , τk〉, we evaluate its
utility λijk with a similar method in [11] to derive the equation
as below:

λijk = βk · s(ui, vj , ϕ)

d(ui, vi, ϕ)
, (1)
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where βk is the utility effectiveness of ads in type τk.

s(ui, vj , ϕ) indicates the temporal preference of ui towards

vj at timestamp ϕ and d(ui, vi, ϕ) represents the distance

between ui and vj at timestamp ϕ.
Since the shops/services of a tag may be in different active

status from time to time, we use αx(ϕ) to reflect the active
level of tag gx at timestamp ϕ. We use the weighted Pearson
correlation coefficient [8] to define s(ui, vj , ϕ) as below:

m(ψi, ϕ) =

∑
x αx(ϕ) · ψ(x)

i∑
x αx(ϕ)

,

cov(ψi, ψj , ϕ) =

∑
x αx(ϕ)(ψ

(x)
i − m(ψi, ϕ))(ψ

(x)
j − m(ψj , ϕ))

∑
x αx(ϕ)

,

s(ui, vj , ϕ) =
cov(ui, vj , ϕ)√

cov(ui, ui, ϕ)cov(vj , vj , ϕ)
, (2)

where, m(ψi, ϕ) indicates the weighted temporal mean of

vector ψi and cov(ψi, ψj , ϕ) means the weighted temporal

covariance of two vector ψi and ψj .

Definition 5. (Maximum Utility Advertisement Assignment

Problem, MUAA) Given a set of spatial customers U and a

set of spatial vendors V , the problem of MUAA is to obtain

an ad assignment instance set, such that:

1) for any instance 〈ui, vj , τk〉, ui is located in the specified

area of vj , that is, d(ui, vj) ≤ rj ;
2) the number of assigned ads for each ui is not more than

one’s ad number limit ui;
3) for each vendor vj , the total cost of the assigned ads

does not exceed its budget Bj , that is,
∑
∀〈ui,vj ,τk〉∈I ck≤ Bj ; and

4) the overall utility,
∑
〈ui,vj ,τk〉∈I λijk, of the ad assign-

ment instance sets I is maximized.

Theorem II.1. (The Hardness of the MUAA Problem) The
maximum utility ad assignment (MUAA) problem given in
Definition 5 is NP-hard.

Proof. We prove the theorem by a reduction from the 0-1

knapsack problem. A 0-1 knapsack problem can be described

as follows: Given a set, C, of n items i numbered from 1

up to n, each with a weight wi and a value xi, along with a

maximum weight capacity W , then find a subset C ′ of C that

maximizes
∑
i∈C′ xi subjected to

∑
i∈C′ wi ≤W .

For a given 0-1 knapsack problem instance, we can trans-

form it to an instance of MUAA as follows: we generate a

MUAA problem with only one customer u0 and one vendor

v0. Then, we give n valid ad assignment instances, such that

for each instance tuple 〈u0, v0, τi〉, the ad cost ci = wi and the

evaluated utility λ00i = xi. Also, we set the budget B0 =W .

Then, for this MUAA instance, we want to achieve an ad

assignment instance set I that maximizes the overall utility∑
∀〈u0,v0,τi〉∈I λ00i subjected to

∑
∀〈u0,v0,τi〉∈I ci ≤ B0. This

way, we can reduce the 0-1 knapsack problem to the MUAA

problem. Since the 0-1 knapsack problem is known to be NP-

hard [10], MUAA is also NP-hard.

III. THE RECONCILIATION APPROACH

In this section, we propose an efficient reconciliation al-

gorithm to handle the MUAA problem, which first solves

the single-vendor problems for each vendor separately (i.e.,

without considering the conflicts from other vendors) with

existing algorithms of multi-choice knapsack problem [7], [9],

and then reconciles the conflicts on the limited numbers of

receiving ads of the customers to provide a global assignment

strategy with the accuracy guarantee.

A. The Single-Vendor problem

We discuss the single-vendor problem, where only one

vendor exists. Specifically, we assume that if there is only one

vendor vo existing, we can obtain a single-vendor problem

Mo, which is presented in a linear programming problem:
max

∑
λiok · xiok (3)

s.t. d(ui, vo) · xiok ≤ ro, i = 1, . . . ,m; k = 1, . . . , q,

m∑

i=1

q∑

k=1

ck · xiok ≤ Bo,

q∑

k=1

xiok ≤ 1, i = 1, . . . ,m,

where, xijk is an indicator, if an ad in type τk of vendor

vj is sent to customer ui, xijk = 1; otherwise, xijk = 0.

This single-vendor problem Mo is a variant of the multi-

choice knapsack problem [7], which can be solved with ε-
approximate LP-relaxation algorithm. That is, the utility value

of the solution obtained with the ε-approximate LP-relaxation

algorithm is at least (1-ε) of that of the optimal solution. In

this paper, we use the LP-relaxation algorithm [7] to solve the

single-vendor problems.

B. The Reconciliation Algorithm

The MUAA problem generally has multiple vendors who

compete for suitable customers, and thus the existing single-

vendor algorithms [7] cannot be used directly. Then, we intro-

duce the reconciliation algorithm to reconcile the violations on

the limitation of the received number of ads, which iteratively

picks a random customer from the set of the customers

having ads limitation violations, then resolves the violations by

replacing the low-utility customer-and-vendor pairs with other

available pairs, until all limitation constraints are satisfied.

Algorithm 1 illustrates the reconciliation algorithm, namely

ViolationReconcile, to take advantage of the existing single-

vendor algorithms and to satisfy the limitation of the received

number of ads, which first solves the single-vendor problems,

then resolves the violations of ads limitation on customers,

and returns a global ad assignment instance set without ad

limitation violations.

First, we initialize the global ad assignment instance set I

to an empty set, as no instances exist (line 1). Next, for each

vendor vj , we obtain a set Uj of its valid customers, who are

located in the effective range of vendor vj (i.e., the distance

between each valid customer and the vendor vj is less than

radius rj) (line 3). For each constructed single-vendor problem

Mj , we solve it with the Linear Programming solver [2] and

obtain the result Ij (lines 4-5). As there may exist ad limitation

violations on customers, we first retrieve a set Û of customers

with violations (i.e., the number of assigned ads in all the

results of single-vendor problems is larger than the limited
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Algorithm 1: Reconcile Algorithm

Input: A set Uϕ of m customers and a set Vϕ of n vendors at
timestamp ϕ

Output: An ad assignment instance set I

1 I← ∅
2 foreach vj ∈ Vϕ do
3 obtain a set of valid customers Uj
4 construct a single-vendor problem Mj with vj and Uj
5 solve Mj to get the result Ij

6 obtain a set Û of customers violating their ad limitations

7 foreach ui ∈ Û do
8 sort the instances of ui based on their utility values

9 while ad limitation violations of ui exist do
10 delete one ad assignment instance 〈ui, vj , τk〉

with the lowest utility value λijk from Ij

11 greedily assign new valid customers to vj and

add the assignment instance to Ij

12 return I =
⋃n
j=1 Ij

number ai of receiving ad of customer ui) (line 6). Then, we

randomly pick one violated customer ui in each iteration and

replace the low-utility customer-and-vendor pairs with other

valid pairs to resolve the violations (lines 7-11). Specifically,

for the randomly selected customer ui, we greedily delete its

ad assignment instance 〈ui, vj , τk〉 with the lowest utility value

(calculated with Equation 1) in Ij (line 10) and reassign one

new valid customer to vj subject to the constraints of the

budget of the vendor and the limitation number of the customer

(line 11). We iteratively reduce the number of assigned ads of

customer ui until the number of his/her assigned ads is less

than ai. Finally, we return a union set of violation-free ad

assignment instance sets.

C. Performance Analysis
The Approximation Ratio. We present the approximation

ratio of Algorithm 1, ViolationReconcile, with the following

theorem.

Theorem III.1. ViolationReconcile has an approximation
ratio of (1− ε) · θ, where θ = min( a1nc

1
, a2nc

2
, ..., amnc

m
), and nci is

the larger value between the number of valid vendors and the
capacity ai of customer ui.

Proof. For a given MUAA problem M with a set U of m cus-

tomers and a set V of n vendors, we donate its optimal solution

as I
∗ and the solution achieved by ViolationReconcile as I.

Let λ(I) be the overall influence value of the instances in I.

Then, we have:
λ(I) =

∑

〈ui,vj ,τk〉∈I
λijk =

∑

ui∈U

∑

〈ui,vj ,τk〉∈I(ui)

λijk.

Let U ′ be the set of customers that are selected in any

single-vendor problem’s solution Ij , then U ′ ⊆ U . Thus, we

have:
λ(I) ≥ ∑

ui∈U ′
∑
〈ui,vj ,τk〉∈I(ui)

λijk. (4)

For each customer ui, let nsi be the number of ads sent

among all the solutions of the single-vendor problems, that

is nsi =
∑n
j=1 |Ij(ui)|, where Ij(ui) is the set of instances

associated with ui in Ij and |Ij(ui)| is its size. Let I(ui)
be the set of instances associated with ui in I. If nsi ≤ ai,
|I(ui)|
ns
i

= 1; if nsi > ai, as we only retain |I(ui)|(= ai) ad

assignment instances having higher influences compared with

the nsi −|I(ui)| ad assignment instances that are replaced, thus
|I(ui)|
ns
i

< 1. Thus, we have
|I(ui)|
ns
i
≤ 1. Then, the Inequality

(4) can be written as:

λ(I) ≥
∑

ui∈U ′

|I(ui)|
nsi

·
n∑

j=1

∑

〈ui,vj ,τk〉∈Ij(ui)

λijk.

If a customer ui we have nsi ≤ ai,
ai
nc
i
= 1 = |I(ui)|

ns
i

; if a

customer ui has nsi > ai, then |I(ui)| = ai. As nci ≥ nsi , ainc
i
<

1 = |I(ui)|
ns
i

. Then, we have
|I(ui)|
ns
i
≥ minui∈U ′(

ai
nc
i
), ∀ui ∈ U ′.

As for any customer uk ∈ U − U ′, ak
nc
k
= 1 ≥ minui∈U ′(

ai
nc
i
),

thus minui∈U (
ai
nc
i
) = minui∈U ′(

ai
nc
i
). Next, we can have the

inequality as below:

λ(I) ≥ min
ui∈U ′

(
ai
nci

) ·
∑

ui∈U ′

n∑

j=1

∑

〈ui,vj ,τk〉∈Ij(ui)

λijk

= min
ui∈U

(
ai
nci

) ·
n∑

j=1

λ(Ij) (5)

For each created single-vendor problem Mj , we donate its

optimal solution as I
∗
j and the solution achieved by the

LP-relaxation algorithm in [7] as Ij . As the LP-relaxation

algorithm for the multi-choice knapsack problem is a ε-
approximate algorithm, we have λ(Ij) ≥ (1−ε) ·λ(I∗j ). Then,

based on the Inequality (5), we have:

λ(I) ≥ (1− ε) · min
ui∈U

(
ai
nci

) ·
n∑

j=1

λ(I∗j ) ≥ (1− ε) · min
ui∈U

(
ai
nci

) · λ(I∗).

Therefore, we have λ(I) ≥ (1 − ε) · θ · λ(I∗), where θ =
minui∈U (

ai
nc
i
). Thus, I is a (1 − ε) · θ-approximate solution

for the MUAA problem instance M w.r.t. the influence of the

selected ad instances, which completes the proof.

IV. EXPERIMENTAL STUDY

Data Sets. For real data sets, we used one check-in data set of

Foursquare [13], which includes 573,703 check-ins from 2,293

users towards 61,858 venues in Tokyo from 12 April 2012 to

16 February 2013 extracted from the Foursquare application

through the public API. Each check-in record contains the

timestamp, the ID of the user, and the ID, category, and

location of the venue. In addition, we use the locations of the

venues to initialize the locations of the vendors, and use the

locations and timestamps of the check-ins to initialize the cor-

responding information of the customers. In the experiments

on the real data set, we only use the check-ins related to the

venues having at least 10 check-ins, which is 441,060 check-

ins of 7,222 venues. In other words, we have 441,060 chances

to post ads to 2,293 customers (here one chance to post ads

to customers means one customer appears in the system) and

7,222 vendors in the real data. For simplicity, we first linearly

map check-in locations from Foursquare into a [0, 1]2 data
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Fig. 1. Effect of the Range [B−, B+] of Budgets.

space, and then modulo the arrival times of customers into

24 hours in the real data accordingly (i.e., ignore the date

information of the timestamps of check-ins). According to a

report [4] of the statistics information of the AdWords system

[1] from 2006 to 2016, we use the average cost per click (the

amount of money to pay for one ad click) and the average

click through rate (i.e., the number of clicks that an ad receives

divided by the number of times the ad is shown) to initialize

the prices and the utility effectiveness of ad types, respectively.

We simulate the budget Bj of each vendor vi with Gaussian

distribution N (B
−+B+

2 , (B+−B−)2) within range [B−, B+],
for 0 < B− ≤ B+ < 1. Similarly, we can generate the radius

values of the range where vendor vj wants to post ads and

the capacities of customers with Gaussian distributions within

the range of the values of [r−, r+] and [a−, a+]. The default

values are: [2, 3] for [r−, r+] and [1, 4] for [a−, a+]

Measures and Competitors. We evaluate the effectiveness

and efficiency of our MUAA processing approach, in terms

of the overall utility score and the CPU time. Specifically,

the CPU time is given by the average time cost of per-

forming MUAA assignment for a single customer. We com-

pare the reconciliation (RECON) algorithm with a random

(RANDOM) method (which randomly assigns vendors’ ads

to valid customers under the budget constraint), a greedy

(GREEDY) method (which iteratively selects one “current best

ad instance” that has the current highest budget efficiency),

and a nearest-neighbor (NEAREST) method (iteratively selects

one “current nearest ad instance” that has the current shortest

distance between the vendor and the worker). The experiments

were run on an Intel Xeon X5675 CPU @3.07 GHZ with 32

GB RAM in Java.

Effect of the range [B−, B+] of vendor budgets. Figure

1 illustrates the experimental results on different ranges,

[B−, B+], of the vendor budgets Bj from [1,5] to [40, 50]. In

Figure 1(a), the total utility values of all the tested approaches

improve when the value range of the vendor budgets becomes

larger firstly, and then remain with high values when the range

of the vendor budgets reaches [20, 30]. The reason is that at

the beginning, the budgets of vendors are low and insufficient

thus only a small portion of the possible ad instances can be

selected and the overall utility values of all the approaches are

low. When the average budgets increase, the algorithms can

select more ad instances, which leads to higher overall utility

values. However, when the budgets are enough to select all

the good ad instances, the overall utility values of our three

approaches stay at a high level. RECON can always achieve

higher overall utility values compared to the competitors.

As shown in Figure 1(b), the running times of RANDOM

are always lower than 10 seconds, but that of GREEDY,

NEAREST and RECON grow with the increase of the average

budgets. For RECON, higher vendor budgets cause the number

of the selected ad instances for each single-vendor problem to

increase, which in turn increases the number of violations of

the capacity constraints of customers, and then the time for

reconciling them as well. GREEDY and NEAREST use more

time than RECON.

V. CONCLUSION

In this paper, we propose the problem of maximum utility

ad assignment (MUAA) problem, which assigns a set of “best”

ad instances of vendors to a given customer with the goal of

maximizing the utility of the ads under the constraints of the

budgets of vendors and the capacities of the customers. We

prove that MUAA is NP-hard. We design the reconciliation

approach, which has an approximation ratio of (1−ε)·θ, where

θ = min( a1nc
1
, a2nc

2
, ..., amnc

m
), and nci is the larger value between

the number of valid vendors and the capacity ai of customer

ui. Experiments on real data sets confirm the efficiency and

effectiveness of our offline algorithm.
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