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Abstract—Spatial crowdsourcing services, such as Uber and
Grabhub, become popular recently. Task assignment plays an
important role in offering high-quality services. However, most
of the existing solutions for task assignment only focus on the
entire performance of the platform and do not optimize the
maximum assignment delay. As a result, they cannot handle some
real world scenarios which require minimizing the maximum
delay in task assignment. In this paper, we study the minimizing
maximum delay spatial crowdsourcing (MMD-SC) problem and
propose solutions aiming at achieving a worst case controlled
task assignment.

The MMD-SC problem assumes that both workers and re-
questers come dynamically and considers not only the workers’
travel costs but also the buffering time of tasks, thus it is very
challenging due to two-sided online setting. To address these
challenges, in this work, we propose a space embedding based
online random algorithm with a competitive ratio of O(logn)
and two efficient heuristic algorithms, namely the threshold based
greedy approach and the batch-based approach. In addition, we
demonstrate the effectiveness and efficiency of our methods via
extensive experiments on both synthetic and real datasets.

I. INTRODUCTION

Following the blossom of mobile Internet and the popularity
of sharing economy, various applications (e.g., Uber [7] and
TaskRabbit [5]) allow users to participate in some location-
based tasks close to their current positions, such as hailing cars
(e.g., DiDi Chuxing [1]), delivering food (e.g., Ele.me [2]), and
reporting the daily menu of a restaurant (e.g., Gigwalk [3]).
Recently, a novel framework, namely spatial crowdsourcing,
is proposed to study the problem of dispatching spatial tasks
having attracted much attention from academia and industry. In
spatial crowdsourcing platforms, there are typically three par-
ties: crowd workers (e.g., Uber drivers), task requesters (e.g.,
passengers), and the platform (e.g., Uber server). Both workers
and requesters reveal their locations to the platform who then
assigns tasks to workers with different goals (e.g., maximizing
the total assigned tasks) subject to spatial/temporal constraints
(e.g., deadlines of tasks).

Existing work mostly focused on optimizing the entire
performance of the whole platform, such as the total travel
cost [40], [42], the overall utility/quality score [14], [33] and
the total number of assigned tasks [24], [36], [41]. However,
in some scenarios, the worst individual performance is critical.
For example, one key issue affecting the user experience of
online car-hailing system is the request delay time (i.e. how

Fig. 1. An example of the MMD-SC problem.

long does a rider wait from the request is received by the
platform till he/she is picked up by an assigned car). Riders
usually cannot bear the unusual long waiting time, which
causes people crazy and permanently leave the platform. In
addition, the maximum request delay time is also a critical
metric in online food delivery platforms. Usually the longest
delivery time is promised lower than a given value to guarantee
the food remaining fresh. To alleviate the worst individual
waiting time problem, in this paper, we consider an important
problem in spatial crowdsourcing systems, namely minimizing
maximum delay spatial crowdsourcing (MMD-SC), which
assigns workers to tasks with a goal to minimize the maximum
delay. To further illustrate this motivation, we go through the
following example.

Example 1. (Minimizing Maximum Delay Spatial Crowd-
sourcing Example) In this example of minimizing maximum
delay spatial crowdsourcing problem, there are two riders r1
and r2 (marked with yellow triangles), and two taxis, w1

and w2 (marked with blue circles) as shown in Figure 1.
Specifically, for each rider, the tuple near to him/her denoted
as 〈rider ID, request timestamp〉 representing that a rider with
the given rider ID sends a request at the request timestamp.
For example, rider r1 requests a taxi on timestamp 1. In
addition, the numbers near to the links indicate the travel
time from two linked taxi and rider.

The riders send their requests to the car-hailing system
server. Then, the server tries to assign a suitable taxi to the
rider to deliver him/her to his/her destination. Usually, the
time period from the request being posted to the server to the
assigned taxi picking up the rider is considered as the delay of



pickup, which affects the user experience for the car-hailing
system dramatically. Thus, the maximum delay needs to be as
small as possible.

In the car-hailing system, riders post their requests at
different timestamps and the server needs to assign taxis to
suitable riders at different timestamps. One simple greedy
strategy may assign each rider with the closest taxi to him/her
once his/her request is received. In this example, this strategy
can achieve a very bad result of assigning w1 to r1 and w2

to r2 having the maximum delay of 7. The optimal solution is
to assign w2 to r1 and w1 to r2, which just has the maximum
delay of 4.

In this paper, we study the minimizing the maximum delay
spatial crowdsourcing (MMD-SC) problem, which matches
the available workers to the requesters such that the maximum
delay is minimized. The delay consists of two parts: 1) time
since a request comes till he/she is assigned; 2) the assigned
worker’s traveling time (i.e., the travel time of a taxi from its
current location to the position of the assigned rider).

The goal of MMD-SC is similar to the bottle matching
problem [13], but the online and waiting time settings differen-
tiate MMD-SC from existing problems. There are two major
challenges need to be addressed in the MMD-SC problem:
(i) How to effectively bound the performance under the two
sided online setting? (ii) How to consider the assign delay
time and traveling time together so that the total delay can
be reduced? To solve the MMD-SC problem, we propose
two efficient heuristic algorithms and a Hierarchically well-
Separated Tree (HST, [19]) based online random algorithm
with a competitive ratio of O(log n). We summarize the main
contributions of this work as follows.

• We formally define the MMD-SC problem which is the first
work focusing on optimizing the worst task performance
(the maximum delay) for task assignment in spatial crowd-
sourcing in Section II.

• We show the deterministic bound of the MMD-SC problem
in Section II-C.

• We propose two basic algorithms in Section III. In addi-
tion, we propose a space embedding based online random
algorithm that can achieve results with at most O(log n)
expected times of delay comparing to the optimal results in
offline solutions in Section IV-C.

• We verify the effectiveness and efficiency of our methods
on both real datasets and synthetic datasets in SectionV.

In addition, Section VI reviews the related studies and
Section VII concludes this paper.

II. PROBLEM SETTINGS

We first formally define the MMD-SC problem, and then
discuss how to measure the performance of an online (random)
task assignment algorithm through a competitive ratio. Finally,
we show the performance bound for deterministic algorithms
is unacceptable for practical usage.

A. Definitions
We first introduce three basic concepts: working space,

crowd worker and task requester.

Definition 1. (Working Space) A working space is a metric
space S = 〈L, d〉 where L = {l1, l2, ..., ln} is the n points
inside the space and d is the distance function with d(li, lj)
denote the travel cost between li and lj .

A working space defines the area where workers and tasks
locate in and the travel cost between any two locations. It can
be any kind of metric space, such as a 2D Euclidean space or a
road network. In this paper, we consider the travel cost as the
travel time between any two locations. In addition, we assume
the travel velocities of workers are known, then we can easily
convert the travel time to the travel distances. Without loss of
generality, in the rest of paper, we also use d(li, lj) to denote
the travel time from location li to location lj .

Definition 2. (Spatial Worker) A spatial worker, denoted by
wi, locates at location li and appears on the platform at
timestamp ti.

In spatial crowdsourcing systems, workers are free to join
and leave. The system can only assign tasks to a worker after
he/she appears in the system. A worker wi can move to any
other location lx within time d(li, lx).

Definition 3. (Spatial Task/Request) A spatial crowdsourcing
task or a request, denoted by rj , appears on the platform at
timestamp tj and specifies a working location lj .

Definition 4. (Assignment Triple) An assignment triple aijx =
〈wi, rj , tx〉 indicates that the platform assigns a worker wi to
a task rj on time tx.

Worker wi needs to move to the location lj of task rj
immediately after receiving the assigned task at timestamp tx.
We note the cost/delay of aijx = 〈wi, rj , tx〉 as follows:

cost(aijx) = tx − tj + d(li, lj), (1)

which indicates the total time that rj waits before worker wi
arrive at location lj , i.e. the server processing time from ti
to tx, and the travel time d(li, lj) of worker wi. Note that,
a valid assignment triple aijx requires that the assignment is
placed after worker wi and request rj appear in the platform
(i.e., tx ≥ ti and tx ≥ tj).

Definition 5. (The Minimizing maximum delay spatial crowd-
sourcing (MMD-SC) problem) In a working space S, given
a set of k workers W and a set of k tasks R, the MMD-SC
problem is to find a set A of k assignment triples such that
the maximum delay maxaijx∈A cost(aijx) is minimized.

Note that, because each task needs one worker and each
worker can conduct one task, k assignment triples can cover
k workers and k tasks.

B. Performance Measurement
The performance of online algorithms is usually measured

in terms of their competitive ratios [12]. Following the con-



vention of recent online matching works [18] and [10], we
formally define the competitive ratio as below:

Definition 6. (Competitive Ratio) LetA be an (random) online
algorithm and A∗ be the optimal offline algorithm. We say A
is α-competitive if for any MMD-SC problem instance I, even
generated by an oblivious adversary who knows A but not its
random choices, the result achieved by A has the Competitive
Ratio (CR) of α as follows:

α ≥ max
∀I

costA(I)

costA∗(I)
, (2)

where costA(I) and costA∗(I) indicate the (expected) maxi-
mum delays achieved by A and A∗, respectively.

Note that, in Definition 6 costA(I) is the expected max-
imum delay achieved by A, when it is an online random
algorithm.

C. Discussion on the Lower Bound of Competitive Ratio

In [25], the authors proved that the lower bound of the
competitive ratio achieved by any deterministic algorithm for
the one-sided online bottleneck matching problem(OBMP) is
k
ln2 ≈ 1.5k (k is the number of nodes in one side). The OBMP
is different from our problem in two aspects. First, OBMP is a
one-sided online problem. It assumes that all worker locations
are static and known in advance, and tasks come one-by-one
while we assume workers and tasks are both dynamically ap-
pearing. Second, OBMP does not allow buffered assignments.
When a new request comes, OBMP needs to assign a worker
to it immediately. While in our problem the assignment can be
buffered to see if any better worker will come. Thus OBMP
can be considered as a subproblem of ours. Next, we prove
that the k

ln2 bound also holds for MMD-SC in Theorem II.1.
We first introduce two lemmas from [25] in facilitating the

proof of Theorem II.1.

Lemma II.1. For any k workers and k requests located on
a horizontal real line, denote them as {w1, w2, ..., wk} and
{r1, r2, ..., rk} by their locations in the left-to-right order. The
matching

{(w1, r1), (w2, r2), ...(wk, rk)}

is an optimal static min-max matching.

Lemma II.2. 2 + 1
21/(k−1)−1 ≥

k
ln 2 for k ≥ 2.

Then, we can have the theorem about the lower bound of
competitive ratio for deterministic algorithms of MMD-SC.

Theorem II.1. No deterministic algorithm for the MMD-SC
problem with k ≥ 2 workers can achieve a competitive ratio
better than k

ln 2 .

Proof. (Extended from the proof for online bottleneck match-
ing in [25])

Given a real line space with the origin point o = 0, any
location on it can be represented as the real number distance
from o. Consider an adversary acts as below on the space:

1) On time t0 = 0, let w1 arrive at l1 = o and wi arrive at
li = li−1 + ui−1 for i = 2, 3, ..., k and u = 2

1
k−1 .

2) Also on time t0 = 0, let r1 arrive at l1 + 1.
3) If w1 has not be assigned, let ri arrive at li + 1 on time

ti for i = 2, 3, ..., k − 1, where ti = ti−1 + ui−1.
4) As soon as w1 is matched to some rj at time th ≤ tx <

th+1(when rh arrived but not rh+1), let all rest requests
arrive immediately: ri at li+1−uj + 1 for i = h+ 1, h+
2, ..., n− 1, and rk at l1 − uj + 1.

5) If w1 is still not matched after rk−1 arriving: hold until
w1 is the only unmatched one, then let rk arrive at lk+1;
otherwise the situation goes to 4.

Let OPT be the optimal static matching result and ALG be
the best result of any deterministic algorithm.

If w1 is matched to rj before rk arrives, rk will be the left-
most request. Because of Lemma 2.2, we know that {rk, w1},
{ri, wi+1} is an optimal matching. So OPT=uj − 1(max cost
is from rh+1, ..., rk). In the mean time, ALG needs to spend
the cost of matching w1 to rj :

∑
i=0..j−1

ui. So we have:

ALG

OPT
≥ uj − 1∑

i=0..j−1

ui
=

1

u− 1

For the situation that w1 is the last left-unmatched worker,
OPT = 1 because each wi is put at the right of ri with
distance 1. ALG has to match w1 with rk, then the cost is at
least 1 +

∑
i=1..n−1

ui. So we also have:

ALG

OPT
≥ 1∑

i=0..n−1

ui
=

1

u− 1

Because of u = 2
1

k−1 and Lemma 2.3, ALG
OPT ≥

k
ln 2 .

As the line space can be included in other Euclidean space
or network space, in general, the competitive ratios achieved
by any deterministic algorithms for MMD-SC are bounded by
k

ln 2 (k is the number of workers).

Due to Theorem II.1, there is no deterministic algorithms
can have a good enough performance for practical applica-
tions. To handle MMD-SC, we propose two deterministic
algorithms in Section 3 and a random algorithm with a better
theoretical bound in Section 4.

III. TWO BASIC ALGORITHMS

In this section, we first propose two basic heuristic algo-
rithms to handle the MMD-SC problem.

A. The Threshold Based Greedy Algorithm

We first propose a greedy algorithm for the MMD-SC
problem, namely the threshold based greedy (TBG) algorithm,
which matches any worker-request pair that has the travel
time below a given threshold γ. In addition, TBG buffers new
requests at most γ time if there are no available workers that
can arrive at the required locations of the requests. For a new
worker wi, TBG assigns it with a request rj that has been
buffered more than γ time.

The intuition of TBG is that the threshold prevents bad
cases where a request should be assigned to a worker who
arrives a little later. The threshold should not be larger than
the maximum cost because a worker arrives that long after
the request will result in the maximum possible delay cost
directly, so it is obvious not a good assignment.



Fig. 2. A running example of Batch-based method for the MMD-SC problem.

TABLE I
ROUNDS OF THE RUNNING EXAMPLE OF BATCH-BASED METHOD

Timestamp Available Workers Requests Assignment Triple
θ {w1, w2, w3} {} {}
2θ {w1, w2, w3, w4, w5} {r1, r2, r3} {〈w1, r3, 2θ〉, 〈w4, r2, 2θ〉, 〈w5, r1, 2θ〉}
3θ {w2, w3, w6, w7} {r4, r5} {〈w7, r4, 3θ〉, 〈w2, r5, 3θ〉}
4θ {w3, w6, w8, w9} {r6, r7} {〈w9, r6, 4θ〉, 〈w8, r7, 4θ〉}
5θ {w3, w6, w10} {r8, r9} {〈w6, r8, 5θ〉, 〈w10, r9, 5θ〉}
6θ {w3} {r10} {〈w3, r10, 6θ〉}

Algorithm 1 The Threshold Based Greedy Algorithm
1: procedure NEW-REQUEST(rj)
2: if there is no available worker then
3: push rj to the idle request queue Q
4: else
5: let wi be the nearest available worker to ri
6: if d(li, lj) ≤ γ then
7: assign wi to rj
8: else
9: push rj to the idle request queue Q

10:
11: procedure NEW-WORKER(wi)
12: find the first request rj in the buffered queue Q s.t.

d(li, lj) + t̄ − tj < γ or t̄ − tj > γ // t̄ is the current
timestamp

13: if no such rj then
14: set wi as available
15: else
16: assign wi to rj

The detailed steps of TBG are described in Algorithm 1.
The procedure NEW-REQUEST is invoked once a new request
rj comes. The procedure NEW-WORKER is invoked when a
new worker wi arrives.

The parameter γ is set to the largest possible assignment
delay which can be estimated from the historical data. Unfor-
tunately, the TBG algorithm does not have a good performance
guarantee under the adversarial model [20], [31]. We will show
the actual performance of it in Section V.

B. The Batch-Based Method

In the TBG algorithm, the server needs to respond to each
task within λ time after it arrives, which, however, leaves
very limited space for the server to select suitable workers
and may prevent some later but more suitable workers from
being selected. To alleviate the phenomena, we propose a
batch-based method (BB), which buffers workers and tasks and
periodically fires a batch process to match tasks that came in
or before the last round with the current available workers. In
other words, let the time interval between any two successive

batches be θ, each coming task will be buffered at least θ, and
then be assigned to a suitable worker in the next batch.

Algorithm 2 shows the details of BB. Specifically, it first
sets the current timestamp as t̄. Next, BB retrieves a set
R′ of requests arriving during the time period of [0, t̄ − θ]
and a set W ′ of current available workers (lines 3-4). Then,
BB utilizes the existing method for offline worker-and-task
matching problems on R′ and W ′ (line 5). Finally, the server
notifies the selected workers to conduct their assigned requests
(lines 6-7).

Algorithm 2 The Batch-Base Algorithm
1: procedure BATCHASSIGN
2: let the current timestamp be t̄
3: let R′ be the set of requests that arrive in [0, t̄− θ]
4: let W ′ be the set of current available workers
5: find the optimal assignment result A′ for R′ on W ′

6: for 〈wi, tj , t̄〉 ∈ A′ do
7: notify worker wi to conduct task tj

The value of θ can be set to the historical average assign-
ment delay or other values smaller than that.

To better illustrate the batch-based method, we show the
details of BB through a running example.

Example 2. (Running example of the batch-based method)
Assume there are 10 workers w1 ∼ w10 (represented by blue
circles) and 10 requests r1 ∼ r10 (represented by yellow
triangles). Their arriving sequence is shown in Figure 2. The
results of batch-based method with the time interval of θ are
shown in Table I. For example, at timestamp θ, the batch-
based method is invoked for the first time, when there are
three available workers w1 ∼ w3, but no requests exist in
time interval [−θ, 0]. Thus, in the first round, no requests are
handled. In the second round, there are five available workers
w1 ∼ w5. In addition, three requests r1 ∼ r3 arrived during
time interval [0, θ], then we use the existing offline algorithm
[21] for the bottleneck maximum cardinality matching problem
to decide the assignment triples as {〈w1, r3, 2θ〉, 〈w4, r2, 2θ〉,
〈w5, r1, 2θ〉}. In this way, we keep periodically invoking the



batch-based method every θ time until all the requests are
dispatched.

The time complexity. Assume that, in each round, there
are m available workers in the set W ′ and n requests in
the set R′, then the time complexity of Algorithm 2 is
O(((m + n) log(m + n))

1
2 (mn)2). It needs O(n) to retrieve

a set of n requests in line 3 of Algorithm 2. Similarly, line 4
needs O(m). To find the optimal assignment/matching for W ′

and R′, it needs O(((m+n) log(m+n))
1
2 (mn)2) according to

the results in [21]. In addition, since each request is assigned
with just one worker, it needs O(n) to send notifications
in lines 6-7 of Algorithm 2. Thus, the time complexity of
Algorithm 2 is O(((m+ n) log(m+ n))

1
2 (mn)2).

IV. AN HST BASED SOLUTION

As discussed in Section II-C, no deterministic online algo-
rithm for the MMD-SC problem can achieve a competitive
ratio better than O(n). Thus, we design an online random
algorithm for a better theoretical performance guarantee. Ex-
isting works [11], [19] show that matching problems on tree
structures usually can be solved better than those on general
metric spaces. Inspired by this, we propose a Hierarchically
well-Separated Tree (HST) based solution for the MMD-SC
problem. Briefly, we first embed the given metric space into an
HST and then solve the MMD-SC problem on the HST. For a
n size space, the HST embedding causes O(log n) distortion,
where the randomness is brought in during constructing the
HST structure. We then design an algorithm with a constant
2 competitive ratio for the MMD-SC problem on HSTs. As
a result, the entire solution can achieve a competitive ratio of
O(log n), where n is the size of the space.

In the following, we first introduce the preliminary knowl-
edge about HST and HST based space embedding in Section
IV-A, next formally define the MDD-SC problem on HSTs
in Section IV-B, then present our HST based algorithm with
theoretical analyses in Section IV-C.

A. Preliminary

We first introduce the basic definitions and properties of
HST, then show how to apply HST on metric space embedding
in our algorithm.

1) Hierarchically well-Separated Tree: Briefly, HST is a
kind of tree with a special structure which benefits the process
of embedding general metric spaces into tree spaces. Below we
give the formal definition of it and all necessary knowledges
about HST based metric embedding that will be used in
our algorithm. For more comprehensive introductions and
theoretical details about HST, please refer to [19].

Definition 7 (k-HST). A weighted tree T with root r is called
a k-HST if it has the following properties:

• All leaves of T are at the same depth, i.e. at the bottom
level;

• For any non-leaf node x, x has the same distance from all
its children.

Fig. 3. An example of k-HST.

Algorithm 3 The Algorithm of building HSTs
1: procedure HST-PARTITION((V = {v1, v2, ..., vn}, d))
2: Let π(V ) be a random permutation of V
3: Choose a β uniformly from [1, 2]
4: Let δ be dlog2 ∆e where ∆ is the diameter of V .
5: Init Dδ = V and i = δ − 1
6: while Di+1 is not a singleton cluster do
7: βi = 2i−1β
8: for l in π(V ) do
9: for each cluster S in Di do

10: Create a new cluster of all unassigned ver-
tices in S closer than βi to π(V )

11: i = i+ 1
return all clusters

• For any non-leaf node x, the distance from x to its parent
is always k times of the distance from x to any of its child.

Figure 2 gives the illustration of a k-HST with 4 levels
and L as the weight in level edges. Next we give the basic
concepts of metric embedding and how to do it with HST .

2) HST based metric embedding: Let (V, d) be a metric
space, where V is a set of locations and d is the distance
function of every pair of locations. Here S is a family of
metric spaces over V , and D is a distribution over S. We
say that a metric (V, d′) dominates (V, d), if ∀u, v ∈ V ,
d′(u, v) > d(u, v). Also we say (S,D) α-probabilistically
approximates (V, d), if all metrics in S dominate (V, d) and
∀u, v ∈ V , Ed′∈(S,D)[d

′(u, v)] ≤ α ·d(u, v), where α is called
the distortion of the approximated embedding.

For embedding with HST, we have the below theorem [19]:

Theorem IV.1. Any metric space with size n can be O(log n)-
probabilistically approximated by a distribution over a family
of HSTs.

The steps to sample a 2-HST from a distribution is illus-
trated in Algorithm 3 (originally proposed by [19]).

Algorithm 3 takes a n size metric space (V, d) as input
and embeds it into an 2-HST within the expected distortion
O(log n). The main idea is to randomly decompose V from
top to bottom and each cluster represents a node in the
final HST (a trivial example is given in Figure 4). Its time
complexity is O(n2).

The space of MMD-SC can be any types of metric space
such as grid, Euclidean space or road network. We just show
that all these spaces can be approximately embedded into an
HST with the O(log n) distortion. The embedding also makes
our solution randomized. Each point in the original space is



Fig. 4. An example of the decomposition in HST building. S is the first cluster
that includes all vertices. S1, S2, S3 are sub-clusters that may be created
during the decomposition of S.

mapped to an HST leaf node. Because the tree construction
is randomized, the adversary does not know the mapping thus
cannot break the expected distortion. When n is large, the
distortion cannot be ignored. Some preprocessing techniques
can be used to reduce space size. Such as a) for a n ∗ n grid
space, each k2 neighboring grids can be merged as one grid
then the space size is reduced to n2/k2 with an additional 2k
distance deviation; b) for an Euclidean space area with radius
r, a hexagonal partition with radius r0 can transform it into a
2πr2√
3r20

size graph [22]; c) for road networks, the k-shortest-path
cover technique mentioned in [16] can be used.

B. The MMD-SC Problem on HST

After the space embedding, the original MMD-SC problem
becomes a new matching problem on HST as follows:

Definition 8. (MMDH) Given an HST T = (α, V, d), a set of
workers W on the leaves of T and a set of requests R with
|R| = |W |. MMDH is to find a set of assignment triples A
between R and W s.t. maxaijx∈A cost(aijx) is minimized.

Different from the MMD-SC problem, the MMDH problem
has some unique features due to the HST structure. The most
significant difference is the possible locations of requests and
workers. Because HST embedding maps points in the original
metric space only to leave nodes of HST, requests and workers
can only appear at leaf nodes in MMDH. By utilizing the tree
structure and the leaf-nodes-only feature of HST, we designed
a algorithm for MMDH with a constant 2 competitive ratio.

Before presenting our algorithm for MMDH, we first discuss
two special cases of the problem: 1) the "offline" case when
both workers and requests have arrived; 2) the "one-side
online" case when workers have arrived and requests come
one-by-one.
The Offline Case. This case is identical to the problem of the
static version of MMDH, i.e. given all requests and workers
in advance and match them with the min-max goal. Due to the
tree structure, this problem can be solved by a simple greedy
method, namely level by level greedy (LLG) algorithm, shown
in Algorithm 4, which simply matches workers and requests
from the bottom level to the upper level one by one.

Specifically, LLG iterates all subtrees from height 0 (leaf
nodes) to max height (the whole tree), match all worker-
request pairs of the current subtree in any order. Obviously
the last matched pair gives the maximum distance.

Algorithm 4 The Level by Level Greedy Algorithm
1: procedure MATCHING(T, S,R)
2: for l from 0 to the height of T do
3: for each subtree t of level l do
4: match all worker-request pairs in t

Similar to the offline min sum matching on HST [11], LLG
also gives the optimal solution to offline min max matching,
as shown below:

Lemma IV.1. The last matched pair in LLG is the optimal
min max matching pair.

Proof. For any i level subtree Ti iterated by LLG, its own
subtrees are also iterated from height 0 to max height. The
iteration can be considered as LLG removes worker-request
pair from it batch by batch and remove all possible pairs during
the max height iteration. If Ti has same numbers of workers
and requests (i.e. perfect matchings exist in it), one of them
must be found on or before LLG finishes the i level iteration.

Let d(s, r) be the max distance found by LLG at a h
level subtree Th. If there exists a matching M ′ s.t. the
max distance d(s′, r′) < d(s, r), then M must match all
workers and requests below h level. That means there exists
a perfect matching among all h − 1 level subtrees of Th.
This is not possible because LLG cannot miss such a perfect
matching.

The One-Side Online Case Following the convention of
online bipartite matching problems [39], [40], when worker
locations are given and requests come one by one, the problem
is considered to be a one-side online problem. We find that
the one-side online MMDH case can be solved by the naive
greedy algorithm (Greedy): always match the new coming
request r with the nearest worker, if multiple nearest workers
exist, choose arbitrarily.

Lemma IV.2. Greedy gives the optimal solution for the one-
side online MMDH problem.

Proof. Suppose dmax on level h is the max distance achieved
by Greedy and (li, lj) is the first matched pair s.t. d(li, lj) =
dmax. If there is another matching M ′ between R,W that has
the max distance d′max < dmax, then we know the matched
distance of rj in M ′ must be smaller than d(li, lj) (i.e.,
d(lj ,M

′(rj)) ≤ d′max < d(li, lj)). In other words, M ′ must
match rj inside a subtree T<h below level h.

Let the h − 1 level subtree containing rj be Th−1, then
T<h is a subtree of Th−1. When Greedy assigns rj to wi, all
workers in Th−1 must have been already assigned, because
wi is currently the nearest worker to rj . Before rj arriving,
there are exactly the same number of requests and workers
inside Th−1. On the other hand, M ′ assigns one of the workers
in Th−1 to rj , which means one of these earlier arrived
requests must be assigned outside Th−1. Thus, the maximum
distance of M ′ is at least on level h (i.e., d′max ≥ dmax). The
contradiction indicates no such matching exists.



Algorithm 5 The hold procedure
1: procedure HOLD(wi, rj)
2: set wi to be held by rj
3: put rj to the holder queue
4: init a count down timer timer(rj) = d(li, lj)
5: call POP-HOLDER on timer(rj) reaches 0

6: procedure POP-HOLDER
7: let rj be the head of the holder queue
8: if timer(rj) ≤ 0 then
9: pop rj from the holder queue

10: assign rj to the worker hold by it
11: call POP-HOLDER

C. The Algorithm for MMDH

The buffer-allowed setting of MMD-SC and MMDH per-
mits that the system needs not to immediately match, i.e. when
there are both unserved requests and available workers, we can
leave both of them waiting for better opposite peers instead
of matching them at once.

The main idea of our algorithm (Algorithms 5 and 6) is
to give the earlier arrived request the best possible worker
by buffering it for a limited time period. The key points
of the algorithm are how to determine which worker is the
best one and how long should it be buffered. We propose
different statuses of requests and workers for better illustrating.
Arrived and not assigned requests have two possible statuses:
“idle” and “holding”. Each status has a first-in-first-out queue
that stores requests the corresponding status following their
arriving order. Workers also have two statuses: "available"
or "being held by a request". A holding request will not go
back to idle. A worker being held by a request may become
available again if the request releases him/her and holds some
other worker.

Before presenting the major matching algorithm, we first
show the new hold operation which is used to virtually reserve
a worker to a request. Specifically, a worker wi is held by a
request rj means wi is the “best” candidate worker for rj
currently and the assignment will be performed after a certain
buffering time period if no better workers arrives. All holding
request-worker pairs are in a global First-In-First-Out holder
queue. When a pair is pushed to the queue, a counting-down
timer is initiated in the meanwhile. Once a request is pushed,
its status will be holding until it becomes the head of the
queue and its timer has also ended. The procedure of hold is
illustrated in Algorithm 5.

Next we show an algorithm utilizing the hold operation.
Similar as the Threshold Based Greedy algorithm, it is also
composed by two procedures that handle newly coming re-
quests and workers respectively.

When a new request rj arrives, if there is no available
worker, it will be put at the tail of the idle queue. Otherwise,
let it hold the nearest available worker wi and put it at the
tail of the holding queue. At the same time, initiate a counting
down timer with value of d(li, lj) (i.e., the travel cost between
wi, rj , recalling that in MMD-SC, the travel cost and delay
cost are considered the same). During the holding time period,

Algorithm 6 The Algorithm for MMDH
1: procedure NEW-REQUEST(rj)
2: if there is no available workers then
3: push rj to the idle request queue.
4: else
5: let wi be the nearest available worker to rj (choose

arbitrarily if multiple exist)
6: HOLD(wi, rj)
7:
8: procedure NEW-WORKER(wi)
9: for each rj in the holder queue do

10: let wrj be the worker held by rj
11: if timer(rj) > d(li, lj) then
12: release wrj and set wi to be held by rj
13: reset timer(rj) to d(li, lj)
14: NEW-WORKER(wrj )
15: return
16: if the idle request queue is not empty then
17: let rj be the head of the idle request queue
18: HOLD(wi, rj)
19: else
20: set wi as available

wi may be replaced by a better worker w′i and the timer may
be reseted to a smaller value of d(l′i, lj). When the timer goes
to 0 and rj is the head of the holding queue (i.e. rj is the
earliest arrived request not assigned yet), assign the holding
worker to rj .

When a new worker wi arrives, we first check if it is a
better worker for any of the holding requests in the arrival time
priority. If so, release the previous holding one wrj and hold
wi instead, then consider wrj as a newly coming worker. wi is
considered better than wrj if and only if timer(rj) > d(li, lj)
(i.e., in the current timestamp, the cost between rj and wi is
less than that between rj and wrj ). Otherwise, let the first
request in the idle queue hold wi.

Theorem IV.2. The competitive ratio of Algorithm 6 for
MMDH is 2.

Proof. For a request rj , w′i is considered better than wi if
d(wi, rj)+max(twi

−trj , 0) ≥ d(w′i, rj)+max(tw′i−trj , 0).
We first show that the algorithm gives each request the best
possible worker (although not assign immediately) with the
arriving time priority.

If wr0 , the best worker of the first arriving request r0, arrives
earlier than r0, it will be held by r0 at the beginning and will
not be released. If wr0 arrives later than r0, it will be held
just on its arriving and also will not be released (because r0
has the highest priority). So r0 gets its best worker. For a later
arriving request ri and its best worker be wri , there are several
situations: a) wri is also the best worker of some previous
request ri−x; b) wri comes earlier than ri and never held by
earlier arriving requests; c) wri comes earlier and has been
held by earlier arriving requests; d) wri comes later than ri.

Situation a) should not be considered because ri−x has a
higher priority than ri. Situation b) and d) is the same as wr0



TABLE II
SYNTHETIC LOCATION DATA GENERATION SETTING

name distribution parameters size
L1 Uniform None 1000*1000
L2 Normal µ = 500, σ = 50 1000*1000

TABLE III
SYNTHETIC ARRIVING TIMES GENERATION SETTING

name distribution parameters tmax

T1 Uniform None 2000
T2 Zipf a=2 2000
T3 Normal µ = 1000, σ = 200 2000

for r0. For situation c), assume the earlier arriving request
always get its own best worker, then wri will be released
finally. Because r0 can get its best worker, so by induction,
all requests get their best worker.

If all assignments are done immediately, i.e. no waiting
time cost, the min-max cost will be the same as the optimal
min-max cost of a one-side online case with each distance
d′(r, w) = d(r, w) + max(tw − tr, 0) . We have shown that
the naive greedy algorithm gives the best solution for the
offline cases in Lemma IV.1 and Lemma IV.2. Because each
request gets its best worker, now we only need to check the
relation between the waiting time waiting(ri), the travel time
travel(ri) and the assignment cost cost(ri) .

For r0, its waiting time cannot be larger than its best cost,
thus not larger than the optimal min max cost OPTminmax.
Furthermore, r0’s waiting time is at least the same as its travel
cost, so we have:

cost(r0) ≤ 2 · waiting(r0) ≤ 2 ·OPTminmax

For later coming requests, the situation is the same as r0 if
they are not blocked. For any ri blocked by ri−1, either

waiting(ri) ≤ waiting(ri−1) ≤ OPTminmax

or

waiting(ri) ≤ travel(ri) ≤ OPTminmax

For either case we have cost(ri) ≤ 2 ·OPTminmax.

Remember that the HST based metric embedding brings the
O(log n) expected distortion. By combining the HST embed-
ding and Algorithm 6, we get the online random algorithm
for MMD-SC with a competitive ratio of O(log n), where n
represents the size of the embedded metric space.

V. EXPERIMENTS

In this section, we study the performance of all three
algorithms for the MMD-SC problem on a taxi trip dataset
and a synthetic dataset.

A. Experiment Setup

In this part, we first introduce the real and synthetic datasets
then present our detailed evaluation methods and goals.

1) Real Datasets: We use the taxi trip data in New York
city from NYC Taxi and Limousine Commission [6]. We
choose the data of yellow taxi in Jan 2017 and Feb 2017. We
assume that passengers are task requesters and taxis are crowd
workers. The taxi trip data contains the time and location
information of pick-ups and drop-offs. We use the pick up
timestamps and locations as the timestamps and locations of
requests, respectively. In addition, we use the drop off location
to initialize the location of the worker because it is where a
taxi becomes available again. Although one taxi may appear
multiple times in the overall period, each drop off is considered
as an independent worker.

2) Synthetic Datasets: For all synthetic datasets, request
and worker locations are sampled from the space with different
distributions. The detail parameters are shown in the Table II.
For the HST based method, we first build the HST for each
working space and then run the algorithm on it.

For the arriving time, we assume all requests and workers
arrive at discrete timestamps sampled from {0, 1, 2, ..., tmax}.
Each virtual time span [t0, t1) in this setting can be considered
as a t1 − t0 seconds in real world time. The detail settings
are presented in Table III. For each synthetic data setting, to
reduce the randomness of sampling, we run experiments for
20 times and report the average results.

3) Evaluation Methods and Goals: Other than our proposed
algorithms, including the batch based method in Section III-B
(BB), the threshold based greedy algorithm in Section III-A
(TBG) and the HST based algorithm in Section IV-C (HST),
we also use a naive greedy algorithm (GRY) as a baseline.
GRY can be considered as TBG with the threshold of 0.

The primary goal of the experiments is to compare the
effectiveness of different algorithms. As mentioned in Section
II, the optimal solution of our problem is identical to the
result of the best offline min-max matching problem with
the matching cost being the summation of the travel cost
pluses the minimum delay cost. Thus, we first compute the
optimal solution OPT with the offline algorithm described in
[13]. Then, to get a universal comparison between different
datasets, the performance of an online algorithm A on a dataset
D represented as A(D)

OPT (D) (i.e., the actual competitive ratio),
where A(D) and OPT (D) are the maximum delays of the
results achieved by algorithm A and OPT respectively. In
addition, we report the average of all delays for each algorithm
to compare their performance for the min-sum goal.

We also try to find out how the following parameters affect
the performances.
• Density of workers and requests. We use density to

represent the number of workers and requests within a
fixed area and time period. Spatial crowdsourcing tasks
of different kinds or in different time may have quite
different task/worker densities. For example, the total taxi
trips in a metropolis [6] are usually more than tens of
thousands while the number of express tasks [4] may
be less than one thousand. Usually the performance of
matching problems is stable when the density increasing
(e.g., the total travel cost in [41]). While the matching
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delay, a major distinction between our problem and
existing ones, will be affected by the temporal density
intuitively. When the temporal density is relatively small,
the delay cost will be the major part of a matching. Thus
we vary both spatial and temporal density together and
vary temporal density alone in our synthetic dataset to
present their effects.

• Distribution of workers and requests. Spatial crowd-
sourcing requests, for both arriving timestamps and loca-
tions, may have quite different distributions in different
situations. For example, the taxi calling service usually
has several peak hours and package delivery service has
a much more stable and uniform distribution during a
whole day. Thus we check the effects of different types
of distributions as shown in Table II and III .

• Size of HST. For the HST-based algorithm, the HST
is considered as a pre-built input data structure. For the
space with various or even unlimited vertices such as a
Euclidean space or a grid space, the vertex amount is too
large for an HST. Then each HST node will be used to
represent a bunch of original vertices or an area. Then
the location errors between the real vertex and the HST
node are introduced other than the embedding distortion.
A larger HST size will give a smaller location error but
have a larger embedding distortion. Thus we pre-build
HSTs with different sizes to check this effect and the
result is shown in Figure 10(a).

B. Results on Synthetic Datasets

1) Effect of density of workers and requests: We first study
the effect of the data density by varying the total numbers of
workers and requests in a fixed space and time span. We use
L1 and T1 settings for both workers and requests generation
and vary data size in {50, 100, 200, 500, 1000}, as shown in
Figure 5.

From Figures 5(a) and 5(b), we observe that HST out-
performs other algorithms in most cases. Intuitively, more
requests and workers bring smaller matching costs. This effect
is confirmed by the decrease of the optimal results in Figure
5(b). When there are 1000 workers and requests, the data
density is high enough for both GDY and TBG to find a good
matching easily. But the tree size of HST does not change, the
location errors become non-negligible. In addition, since we
use a fixed batch size for BB, the performance of it becomes
worse when the data density increases.

Figure 5(c) shows that HST has a larger average matching
cost than OPT. The reason is that the hold procedure in our
HST algorithm brings a waiting cost for all matchings. When
the data density is high, this waiting cost becomes the major
cost. Also we can see that both GDY and TBG have a better
performance than OPT in this part. This is because the offline
bottleneck matching algorithm needs to consider the global
maximum cost and sacrifices some of the total cost while GDY
and TBG just find the current minimal matching.

2) Effects of distribution of workers and requests: In this
part we vary different types of distributions for both workers
and requests. The following combinations are tried: 1) L1,
T1 for workers and L1, T2 (Zipf distribution) for requests; 2)
L1, T1 for workers and L2 (Normal distribution), T3 (Normal
distribution) for requests. The results are shown separated in
Figure 6 and Figure 7.

Figure 6 shows that all algorithms perform well (all com-
petitive ratios are below 1.2). This is because most requests
come at the beginning, then they need to wait for a long time
to be matched. In addition, the density does not affect the
performance because the delay cost is the major cost here.

In Figure 7, the locations and the arriving timestamps of
requests both follow a Normal distribution. Most requests
come at the center of the space and in the middle of the overall
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time span. Similar to the Zipf case, there are always some
requests who need to wait for a long time, thus all algorithms
perform not bad. We can also observe that the competitive
ratio of HST is lower than other tested algorithms.

3) Effects of relative density difference between spatial and
temporal: We use L1, T1 for workers and use L1 , T3 for
requests and vary the time span of both requesters and workers
in {[0, 200), [0, 500), [0, 1000), [0, 2000), [0, 5000)} with the
size fixed to 1000. That is, we try the same spatial density
with different temporal densities.

From Figure 8(a) we can see that the relative density affects
the performance a lot. When the temporal density is high (time
span {[0, 200), [0, 500)), HST has no advantages to GDY and
TBG. This is because there are enough new arriving workers
to be matched and the delay cost can be ignored. When the
temporal density decreases, HST begins to outperform other
methods.

C. Results on Real Datasets
We test the proposed algorithms on each daily data and

use the average result as the final result. For each daily
data, we group them by hours and show the result of some
representative hours in Figure 9. The taxi trip dataset does
not have any obvious patterns or distributions. The major
difference between different hours is the data density. 6PM
has around 5000 trips and 2AM has less than 1000.

In Figure 9, the taxi trip data does not have a peak of
densities. HST also has the best competitive ratios among
all methods. In Figure 9(c), GDY and TBG perform better
than BB and HST because both BB and HST have some
compulsive waiting time for all requests.

In addition, we sample one group of taxi trip data in 6
PM to evaluate the parameters of our algorithms. The result
is shown in Figure 10. We vary the size of HST, the size of
one batch, the size of threshold and show the result in Figures
10(a), 10(b) and 10(c). We can see that all these parameters

have effects on the performance especially for the TBG and
BB. The size of HST has a smaller effect but the increasing
trend is obvious.

D. Summary of Experiment Results

We summarize our major findings as follows:
• HST has a better and more stable competitive ratio com-

pared to all other algorithms in most cases.
• When the offline optimal cost is large, simple heuristic

algorithms GDY and TBG have good competitive ratios.
• The size of HST has a limited effect on the performance.

VI. RELATED WORKS

In this section, we review related works from two categories,
task assignment for spatial crowdsourcing and online matching
problems.
A. Task assignments for Spatial Crowdsourcing

In recent years, with the fast development of smartphones
and other mobile devices, spatial crowdsourcing becomes more
and more popular in various applications such as Offline-to-
Online (O2O) services and online taxi order services. Task as-
signment is one the the core problems in spatial crowdsourcing
[33], [34], [36]–[39], [41], [43]–[45].

To our best knowledge, [27] first proposed the task alloca-
tion problem on spatial crowdsourcing. They try to maximize
the platform’s throughput in with batch-based algorithms, i.e.
the total number of assigned tasks. Some follow up works also
focused on how to do better batch-based assignment for spatial
tasks and propose additional constraints and goals, such as
[28] introduced the crowd worker reliability, [36] proposed the
maximum assigned utility goal and [15] added an additional
spatial temporal diversity goal. Privacy issues in spatial task
assignment are also studied in [32], [35]. All of them consider
the task assignment as an static matching problem aiming to
maximize the total throughput.
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In the real world scenario, both workers and tasks come
dynamically. Thus the spatial task assignment is essentially
an online problem. [24] first used an online model to describe
the assignment process and proposed a novel method for one-
side online task assignment. [39] first formalized a two-side
online matching problem with the total utility maximization
goal and proposed well-performed online algorithm under the
random order evaluation model. Then [41] further generalized
the online model and provided an assignment algorithm with
better performance under i.i.d evaluation model (both tasks
and workers). In addition, [33] studied the trichromatic task
assignment problem. Unlike the traditional bipartite worker-
task matching, they considered the matching with three parties:
workers, requesters and places of tasks.

B. Online matching problems

As one of the fundamental problems of combinatorial
optimization, various different online versions of matching/
bipartite matching problems have been well studied in past
decades. In this part we review some representative works of
them that are related to our problem.

1) Min Max Matching Problems: The min max matching
problem, also known as bottleneck assignment or worst case
matching problem, was firstly proposed by [23]. A well-known
solution for it is Threshold [13] which searches the bottleneck
by solving multiple max cardinality matching problems with
high cost edges removed from the input bipartite graph. Based
on Threshold, [21] proposed an improved algorithm with a
faster bottleneck searching process. Also [17] showed the
problem can be solved more efficiently on some special spaces.
Recently, [30] proposed a variant with additional capacity
constraints and gave an algorithm with good efficiency and
scalability on Euclidean spaces. The Online Bottleneck Match-
ing problem mentioned in Section II can be considered as
an one-sided online extension of these works. The major

differences between our problem and them is that we have
a two-sided online setting and the delay time goal.

2) Online Weighted Bipartite Matching Problems: [26] and
[29] first studied the problem of online weighted matching
respectively. Their problem can be briefly described as an
one-side online variant of the traditional min-sum weighted
bipartite matching problem [13]. They showed that the per-
formance bound for any deterministic algorithm is 2k − 1
where k is the number of nodes in one side of the bipartite
graph and gave an algorithm known as PERMUTATION that
archived this bound. [26] also mentioned that PERMUTATION
can archive the 2k − 1 bound for the min-max goal.

3) Online Matching With Delays Problems: In the original
online matching problems, assignment decisions have to be
made immediately. In other words, delayed matchings are not
allowed. Some very recent works [8]–[10], [18] studied the
online matching problem with delays.

[18] first proposed the problem of mincost perfect matching
with delays (MPMD). Briefly, given a sequence of requests
on a metric space, MPMD tries to find a min-sum matching
between these requests with both the distance cost and the
delay cost . A typical application of MPMD is the online two-
player game matching where the platform tries to minimize
both the waiting time before players are matched and the
skill difference between each matched pair. [8] and [10] then
extended MPMD to the min-cost bipartite perfect matching
with delays (MBPMD) problem by adding a polarity property
(either positive or negative) of the requests to be matched. The
goal of MBPMD is to minimize the total distance cost and
delay cost but it only allows matching between requests with
different polarities. In other words, MPMD is about matchings
over general graphs and MBPMD is about bipartite graphs. [8]
showed the competitive ratio of any randomized algorithm for
MBPMD is Ω(

√
logn

log logn ). They also provided an O(log n)-
competitive random algorithm and a (10h)-competitive deter-



ministic algorithm on trees of height h.
MBPMD is the most related existing work to our prob-

lem. There are two major differences. First, their goal is to
minimize the total cost of all matched pairs and our goal is
to minimize the maximum matching cost. Theoretically min-
sum matching problems and min-max matching problems have
quite different combinatorial properties [13]. Second, MBPMD
considers the delay cost of both bipartite sides and our problem
considers only the waiting time of task requesters. Their setting
is reasonable for those applications where two parties are
not essentially different, such as online game players. While
our setting is based on the spatial crowdsourcing background
where the experience of requesters is the critical indicator.

VII. CONCLUSION

In this paper, we propose the problem of minimizing the
maximum delay in spatial crowdsourcing (MMD-SC). Par-
ticularly, the workers and requests keep coming on a metric
space and we need to assign each request a suitable arrived
worker dynamically and minimize the maximum request delay
time. We show that deterministic algorithms for the MMD-SC
problem have a lower bound k

ln 2 of competitive ratio, where
k is the number of total workers. We propose two heuristic
algorithms, namely the threshold based algorithm and the
batch-based algorithm, and one Hierarchically well-Separated
Tree (HST) based online random algorithm on MMD-SC,
which has a competitive ratio O(log n) (i.e., the expected
maximum cost of our HST-based algorithm is at most O(log n)
times to the optimal maximum cost). Extensive experiments
have shown the efficiency and effectiveness of our proposed
algorithms on both real and synthetic data sets.
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