
Task Assignment on Multi-Skill Oriented
Spatial Crowdsourcing

Peng Cheng, Xiang Lian, Lei Chen,Member, IEEE, Jinsong Han,Member, IEEE,

and Jizhong Zhao,Member, IEEE

Abstract—With the rapid development of mobile devices and crowdsourcing platforms, the spatial crowdsourcing has attracted much

attention from the database community. Specifically, the spatial crowdsourcing refers to sending location-based requests to workers,

based on their current positions. In this paper, we consider a spatial crowdsourcing scenario, in which each worker has a set of qualified

skills, whereas each spatial task (e.g., repairing a house, decorating a room, and performing entertainment shows for a ceremony) is

time-constrained, under the budget constraint, and required a set of skills. Under this scenario, we will study an important problem,

namelymulti-skill spatial crowdsourcing (MS-SC), which finds an optimal worker-and-task assignment strategy, such that skills

between workers and tasks match with each other, and workers’ benefits are maximized under the budget constraint. We prove that the

MS-SC problem is NP-hard and intractable. Therefore, we propose three effective heuristic approaches, including greedy, g-divide-and-

conquer and cost-model-based adaptive algorithms to get worker-and-task assignments. Through extensive experiments, we

demonstrate the efficiency and effectiveness of our MS-SC processing approaches on both real and synthetic data sets.

Index Terms—Multi-skill spatial crowdsourcing, greedy algorithm, g-divide-and-conquer algorithm, cost-model-based adaptive algorithm

Ç

1 INTRODUCTION

WITH the popularity of GPS-equipped smart devices and
wireless mobile networks [11], [16], nowadays people

can easily identify and participate in some location-based
tasks that are close to their current positions, such as taking
photos/videos, repairing houses, and/or preparing for par-
ties at some spatial locations. Recently, a new framework,
namely spatial crowdsourcing [16], for employing workers to
conduct spatial tasks, has emerged in both academia (e.g., the
database community [8]) and industry (e.g., TaskRabbit [3]).
A typical spatial crowdsourcing platform (e.g., gMission [8]
and MediaQ [17]) assigns a number of moving workers to do
spatial tasks nearby, which requires workers to physically
move to some specified locations and accomplish these tasks.

Note that, not all spatial tasks are as simple as taking a
photo or video clip (e.g., street view of Google Maps [2]),
monitoring traffic conditions (e.g., Waze [4]), or reporting
local hot spots (e.g., Foursquare [1]), which can be easily
completed by providing answers via camera, sensing devi-
ces in smart phones, or naked eyes, respectively. In contrast,
some spatial tasks can be rather complex, such as repairing a
house, preparing for a party, and performing entertainment
shows for a ceremony, which may consist of several steps/

phases/aspects, and require demanding professional skills
fromworkers. In other words, these complex tasks cannot be
simply accomplished by normal workers, but require the
skilled workers with specific expertise (e.g., fixing roofs or
setting up the stage).

Inspired by the phenomenon of complex spatial tasks, in
this paper, we will consider an important problem in the
spatial crowdsourcing system, namely multi-skill spatial
crowdsourcing (MS-SC), which assigns multi-skilled workers
to those complex tasks, with the matching skill sets and
high scores of the worker-and-task assignments.

In the sequel, we will illustrate the MS-SC problem by a
motivation example of repairing a house.

Example (Repairing a House). Consider a scenario of the
spatial crowdsourcing in Fig. 1, where a user wants to
repair a house he/she just bought, in order to have a
good living environment for his/her family. However, it
is not an easy task to repair the house, which requires
many challenging works (skills), such as repairing roofs/
floors, replacing/installing pipe systems and electronic
components, painting walls, and finally cleaning rooms.
There are many skilled workers that can accomplish one
or some of these skill types. In this case, the user can post
a spatial task t1, as shown in Fig. 1, in the spatial crowd-
sourcing system, which specifies a set of required skills
(given in Tables 1 and 2) for the house-repairing task, a
deadline of the arrival time to repair, and the maximum
budget that he/she would like to pay. In Fig. 1, around
the spatial location of task t1, there are eight workers,
w1 � w8, each of whom has a different set of skills as
given in Table 1. For example, worker w1 has the skill set
fpainting walls; installing pipe systems; cleaningg. In
addition, each worker has a maximum moving distance,
as workers may not want to go to another city to conduct

� P. Cheng and L. Chen are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Kowloon,
Hong Kong, China. E-mail: {pchengaa, leichen}@cse.ust.hk.

� X. Lian is with the Department of Computer Science, University of Texas
Rio Grande Valley, Edinburg, TX 78539. E-mail: xiang.lian@utrgv.edu.

� J. Han and J. Zhao are with the Department of Computer Science, Xi’an
Jiaotong University, Shaanxi, China.
E-mail: {hanjinsong, zjz}@mail.xjtu.edu.cn.

Manuscript received 23 Dec. 2015; revised 16 Mar. 2016; accepted 21 Mar.
2016. Date of publication 4 Apr. 2016; date of current version 5 July 2016.
Recommended for acceptance by G. Li.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2550041

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016 2201

1041-4347� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

spatial tasks. Moreover, different workers also have dif-
ferent moving velocities.

To accomplish the spatial task t1 (i.e., repair the house),
the spatial crowdsourcing platform needs to select a best
subset of workers wi (1 � i � 8), such that the union of
their skill sets can cover the required skill set of task t1,
and,moreover, workers can travel to the location of t1 with
the maximum net payment under the constraints of arrival
times, workers’ moving ranges, and budgets. For example,
we can assign task t1 with three workers w2, w7, and w8,
who are close to t1, and whose skills can cover all the
required skills of t1.
Motivated by the example above, in this paper, we will

formalize the MS-SC problem, which aims to efficiently
assign workers to complex spatial tasks, under the task con-
straints of valid time periods and maximum budgets, such
that the required skill sets of tasks are fully covered by those
assigned workers, and the total score of the assignment
(defined as the total profit of workers) is maximized.

Note that, existing works on spatial crowdsourcing
focused on assigning workers to tasks to maximize the total
number of completed tasks [16], the number of performed
tasks for a worker with an optimal schedule [11], or the reli-
ability-and-diversity score of assignments [9]. However,
they did not take into account multi-skill covering of com-
plex spatial tasks, time/distance constraints, and the assign-
ment score with respect to task budgets and workers’
salaries (excluding the traveling cost). Thus, we cannot
directly apply prior solutions to solve our MS-SC problem.

In this paper, we first prove that our MS-SC problem in
the spatial crowdsourcing system is NP-hard, by reducing it
from the Set Cover Problem (SCP) [15]. As a result, the MS-SC
problem is not tractable, and thus very challenging to
achieve the optimal solution. Therefore, in this paper, we
will tackle the MS-SC problem by proposing three effective
heuristic approaches, greedy, g-divide-and-conquer (g-D&C),
and cost-model-based adaptive algorithms, which can effi-
ciently compute worker-and-task assignment pairs with the
constraints/goals of skills, time, distance, and budgets.

Specifically, we make the following contributions.

� We formally define the multi-skill spatial crowdsourcing
problem in Section 2, under the constraints of multi-

skill covering, time, distance, and budget for spatial
workers/tasks in the spatial crowdsourcing system.

� We prove that the MS-SC problem is NP-hard, and
thus intractable in Section 2.4.

� We propose efficient heuristic approaches, namely
greedy, g-divide-and-conquer, and cost-model-based
adaptive algorithms to tackle the MS-SC problem in
Sections 4, 5, and 6, respectively.

� We conduct extensive experiments on real and syn-
thetic data sets, and show the efficiency and effec-
tiveness of our MS-SC approaches in Section 7.

Section 3 introduces a general framework for our MS-SC
problem in spatial crowdsourcing systems. Section 8
reviews previous works on spatial crowdsourcing. Finally,
Section 9 concludes this paper.

2 PROBLEM DEFINITION

In this section, we present the formal definition of the multi-
skill spatial crowdsourcing, in which we assignmulti-skilled
workers with time-constrained complex spatial tasks.

2.1 Multi-Skilled Workers

We first define the multi-skilled workers in spatial crowd-
sourcing applications. Assume that C ¼ fa1; a2; . . . ; akg is a
universe of k abilities/skills. Each worker has one or multi-
ple skills in C, and can provide services for spatial tasks
that require some skills inC.

Definition 1 ðMulti-Skilled WorkersÞ. LetWp ¼ fw1; w2;. . . ;
wng be a set of n multi-skilled workers at timestamp p. Each
worker wi (1 � i � n) has a set, Xi ð� CÞ, of skills, is located
at position liðpÞ at timestamp p, can move with velocity vi,
and has a maximum moving distance di.

In Definition 1, the multi-skilled workers wi can move
dynamically with speed vi in any direction, and at each
timestamp p, they are located at spatial places liðpÞ, and pre-
fer to move at most di distance from liðpÞ. They can freely
join or leave the spatial crowdsourcing system. Moreover,
each worker wi is associated with a set, Xi, of skills, such as
taking photos, cooking, and decorating rooms.

2.2 Time-Constrained Complex Spatial Tasks

Next, we define complex spatial tasks in the spatial crowd-
sourcing system, which are constrained by deadlines of
arriving at task locations and budgets.

Definition 2 ðTime-Constrained Complex Spatial TasksÞ.
Let Tp ¼ ft1; t2; . . . ; tmg be a set of time-constrained complex
spatial tasks at timestamp p. Each task tj (1 � j � m) is

Fig. 1. An example of repairing a house in the multi-skill spatial crowd-
sourcing system.

TABLE 1
Worker/Task Skills

worker/task skill key set

w1, w4, w8 {a1, a4, a6}
w2 {a5}
w3, w7 {a2, a3}
w5, w6 {a1, a5}

t1, t2, t3 {a1 � a6}

TABLE 2
Descriptions of Skills

skill key skill description

a1 painting walls
a2 repairing roofs
a3 repairing floors
a4 installing pipe systems
a5 installing electronic components
a6 cleaning

2202 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016

located at a specific location lj, and workers are expected to
reach the location of task tj before the arrival deadline ej. More-
over, to complete the task tj, a set, Yj ð� CÞ, of skills is
required for those assigned workers. Furthermore, each task tj
is associated with a budget, Bj, of salaries for workers.

As given in Definition 2, usually, a task requester creates
a time-constrained spatial task tj, which requires workers
physically moving to a specific location lj, and arriving at lj
before the arrival deadline ej. Meanwhile, the task requester
also specifies a budget, Bj, of salaries, that is, the maximum
allowance that he/she is willing to pay for workers. This
budget, Bj, can be either the reward cash or bonus points in
the spatial crowdsourcing system.

Moreover, the spatial task tj is often complex, in the
sense that it might require several distinct skills (in Yj) to be
conducted. For example, a spatial task of repairing a house
may require several skills, such as repairing floors, painting
walls and cleaning.

2.3 The Multi-Skill Spatial Crowdsourcing Problem

In this section, we will formally define the multi-skill spatial
crowdsourcing problem, which assigns spatial tasks to
workers such that workers can cover the skills required by
tasks and the assignment strategy can achieve high scores.

Task assignment instance set. Before we present the MS-SC
problem, we first introduce the concept of task assignment
instance set.

Definition 3 ðTask Assignment Instance SetÞ. At timestamp
p, given a worker set Wp and a task set Tp, a task assignment
instance set, denoted by Ip, is a set of worker-and-task assign-
ment pairs in the form hwi; tji, where each worker wi 2 Wp is
assigned to at most one spatial task tj 2 Tp.

Moreover, we denote CTp as the set of completed tasks tj
that can be reached before the arrival deadlines ej, and accom-
plished by those assigned workers in Ip.

Intuitively, the task assignment instance set Ip is one valid
worker-and-task assignment between worker setWp and task
set Tp. Each pair hwi; tji is in Ip, if and only if this assignment
satisfies the constraints of task tj, with respect to distance (i.e.,
di), time (i.e., ej), budget (i.e.,Bj), and skills (i.e., Yj).

In particular, for each pair hwi; tji, worker wi must arrive
at location lj of the assigned task tj before its arrival dead-
line ej, and can support the skills required by task tj, that is,

Xi

T
Yj 6¼ ;. The distance between liðpÞ and lj should be less

than di. Moreover, for all pairs in Ip that contain task tj, the
required skills of task tj should be fully covered by skills of
its assigned workers, that is, Yj � [8hwi;tji2IpXi.

To assign a worker wi to a task tj, we need to pay him/
her salary, cij, which is related to the travelling cost from
the location, liðpÞ, of worker wi to that, lj, of task tj. The trav-
elling cost, cij, for vehicles can be calculated by the unit gas
price per gallon times the number of gallons needed. For
the public transportation, the cost cij can be computed by
the fees per mile times the travelling distance. For walking,
we can also provide the compensation fee for the worker
with the cost cij proportional to his/her travelling distance.

Without loss of generality, we assume that the cost, cij, is
proportional to the travelling distance, distðliðpÞ; ljÞ, between

liðpÞ and lj, where distðx; yÞ is a distance function between
locations x and y. Formally, we have: cij ¼ Ci � distðliðpÞ; ljÞ,
whereCi is a constant (e.g., gas/transportation fee permile).

Note that, for simplicity, in this paper, we use Euclidean
distance as our distance function (i.e., distðx; yÞ). We can eas-
ily extend our proposed approaches in this paper by consider-
ing other distance function (e.g., road-network distance),
under the framework of the spatial crowdsourcing system.

The MS-SC problem. In the sequel, we give the definition
of our multi-skill spatial crowdsourcing problem.

Definition 4 (Multi-Skill Spatial Crowdsourcing Prob-
lem). Given a time interval P , the problem ofmulti-skill spa-
tial crowdsourcing is to assign the available workers
wi 2 Wp to tasks tj 2 Tp, and to obtain a task assignment
instance set, Ip, at each timestamp p 2 P , such that:

1) any worker wi 2 Wp is assigned to only one spatial
task tj 2 Tp such that his/her arrival time at location lj
is before the arrival deadline ej, the moving distance is
less than the worker’s maximum moving distance di,
and all workers assigned to tj have skill sets fully cov-
ering Yj;

2) the total travelling cost of all the assigned workers to
task tj does not exceed the budget of the task, that is,P

8hwi;tji2Ip cij � Bj; and

3) the total score,
P

p2P Sp, of the task assignment
instance sets Ip within the time interval P is
maximized,

where it holds that:

Sp ¼
X

tj2CTp
B0

j; and (1)

B0
j ¼ Bj �

X
hwi;tji2Ip

cij: (2)

Definition 4 can be rewritten in the form of the linear
programming problem below:

max
X

tj2CTp
ðBj �

Xn
i¼1

cijxijÞ

s.t. distðlj; liðpÞÞ � ðej � pÞ � vi � di i ¼ 1; . . . ; n; j ¼ 1; . . . ;m;

Yj � [n
i¼1Xi ^ xij tj 2 CTp;Xn

i¼1

cijxij � Bj j ¼ 1; . . . ;m;

Xm
j¼1

xij � 1 i ¼ 1; :::; n;

where, xij is an indicator. If a worker wi is assigned to a task
tj, xij ¼ 1; otherwise, xij ¼ 0.

In Definition 4, our MS-SC problem aims to assign work-
ers wi to tasks tj such that: (1) workers wi are able to reach
locations, lj, of tasks tj on time and cover the required skill
set Yj, and the moving distance is less than di; (2) the total
travelling cost of all the assigned workers should not exceed
budget Bj; and (3) the total score,

P
p2P Sp, of the task-and-

worker assignment within time interval P is maximized.
After the server-side assignment at a timestamp p, those

assigned workers will become unavailable, and move to the

CHENG ETAL.: TASK ASSIGNMENTON MULTI-SKILLORIENTED SPATIAL CROWDSOURCING 2203

locations of spatial tasks. Next, these workers will become
available again, only if they finish/reject the assigned tasks.

Discussions on the score Sp. Eq. (1) calculates the score, Sp, of
a task-and-worker assignment by summing up flexible budg-
ets, B0

j (given by Eq. (2)), of all the completed tasks tj 2 CTp,

where the flexible budget of task tj is the remaining budget of
task tj after paying workers’ travelling costs. Maximizing
scores means maximizing the number of accomplished tasks
whileminimizing the travelling cost of workers.

Intuitively, each task tj has a maximum budget Bj, which
consists of two parts, the travelling cost of the assigned
workers and the flexible budget. The former cost is related
to the total travelling distance of workers, whereas the latter
one can be freely and flexibly used for rewarding workers
for their contributions to the task. Here, the distribution of
the flexible budget among workers can follow existing
incentive mechanisms in crowdsourcing [19], [23], which
stimulate workers who did the task better (i.e., with more
rewards). We can reward the workers based on the require-
ment of the assigned tasks and the skills that they can pro-
vide, which is beyond the scope of this study. We would
like to leave it as our future work.

Note that, in Eq. (1), the score, Sp, of the task assignment
instance set Ip only takes into account those tasks that can

be completed by the assigned workers (i.e., tasks in set
CTp). Here, a task can be completed, if the assigned workers

can reach the task location before the deadline and finish
the task with the required skills.

Since the spatial crowdsourcing system is quite dynamic,
new tasks/workers may arrive at next timestamps. Thus, if
we cannot find enough/proper workers to do the task at the
current timestamp p, the task is still expected to be success-
fully assigned with workers and completed in future time-
stamps. Meanwhile, the task requester can be also informed
by the spatial crowdsourcing system to increase the budget
(i.e., with higher budget Bj, we can find more skilled

candidate workers that satisfy the budget constraint). There-
fore, in our definition of score Sp, we would only consider

those tasks in CTp that can be completed by the assigned

workers at timestamp p, and maximize this score Sp.

2.4 The Hardness of the MS-SC Problem

Withm time-constrained complex spatial tasks and nmulti-
skilled workers, in the worst case, there are an exponential
number of possible task-and-worker assignment strategies,
which leads to high time complexity, Oððmþ 1ÞnÞ. In this
section, we prove that our MS-SC problem is NP-hard, by
reducing a well-known NP-hard problem, set cover problem
(SCP) [22], to the MS-SC problem.

Lemma 1 (Hardness of the MS-SC Problem). The problem of
the Multi-Skill Spatial Crowdsourcing is NP-hard.

Proof. Please refer to Appendix A in supplementary materi-
als, which can be found on the Computer Society Digital
Library at http://10.1109/TKDE.2016.2550041. tu
Since the MS-SC problem involves multiple spatial tasks

whose skill sets should be covered, we thus cannot directly
use existing approximation algorithms for SCP (or its var-
iants) to solve the MS-SC problem. What is more, we also
need to find an assignment strategy such that workers and
tasks match with each other (in terms of travelling time/
cost, and budge constraints), which is more challenging.

Thus, due to the NP-hardness of our MS-SC problem, in
subsequent sections, wewill present a general framework for
MS-SC processing and design three heuristic algorithms,
namely greedy, g-divide-and-conquer, and cost-model-based
adaptive approaches, to efficiently retrieveMS-SC answers.

Table 3 summarizes the commonly used symbols.

3 FRAMEWORK FOR SOLVING THE MS-SC
PROBLEM

In this section, we present a general framework, in Fig. 2 for
solving the MS-SC problem, which greedily assigns workers
with spatial tasks for multiple rounds. For each round, at
timestamp p, we first retrieve a set, Tp, of all the available spa-
tial tasks, and a set,Wp, of available workers (lines 2-3). Here,
the available task set Tp contains existing spatial tasks that
have not been assigned with workers in the last round, and
the ones that newly arrive at the system after the last round.
Moreover, set Wp includes those workers who have accom-
plished (or rejected) the previously assigned tasks, and thus
are available to receive new tasks in the current round.

In our spatial crowdsourcing system, we organize both
sets Tp and Wp in a cost-model-based grid index. For the

TABLE 3
Symbols and Descriptions

Symbol Description

Tp a set ofm time-constrained spatial tasks tj at
timestamp p

Wp a set of n dynamically moving workers wi at
timestamp p

ej the deadline of arriving at the location of task tj
liðpÞ the position of worker wi at timestamp p
lj the position of task tj
Xi a set of skills that worker wi has
Yj a set of the required skills for task tj
di the maximummoving distance of worker wi

Bj the maximum budget of task tj
Ip the task assignment instance set at timestamp p
CTp a set of tasks that are assigned with workers at

timestamp p and can be completed by these
assigned workers

Ci the unit price of the travelling cost of worker wi

cij the travelling cost from the location of worker wi to
that of task tj

Sp the score of the task assignment instance set Ip
DSp the score increase when changing the pair

assignment

Fig. 2. Framework for solving the MS-SC problem.

2204 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016

sake of space limitations, details about the index construc-
tion can be found in Appendix E of supplementary materi-
als, available online. Due to dynamic changes of sets Tp and
Wp, we also update the grid index accordingly (line 4).
Next, we utilize the grid index to efficiently retrieve a set, S,
of valid worker-and-task candidate pairs (line 5). Note that,
we only need to find the entire set of valid pairs at the
beginning, and then update the set in subsequent time-
stamps, whose time cost is low with the help of our grid
index. That is, we obtain those pairs of workers and tasks,
hwi; tji, such that workers wi can reach the locations of tasks
tj and satisfy the constraints of skill matching, time, and
budgets for tasks tj. With valid pairs in set S, we can apply
our proposed algorithms, that is, greedy (GREEDY), g-divide-
and-conquer (g-D&C), or adaptive cost-model-based (ADAP-
TIVE) approach, over set S, and obtain a good worker-and-
task assignment strategy in an assignment instance set Ip,
which is a subset of S (line 6). Finally, for each pair hwi; tji
in the selected worker-and-task assignment set Ip, we will
notify worker wi to do task tj (lines 7-8).

In particular, GREEDY selects a “best” worker-and-task
pair that can achieve the maximum increase of the score
DSp (as given in Eq. (3)), which is a local optimal approach.
g-D&C keeps dividing the problem into g subproblems on
each level, until finally the number of tasks in each subprob-
lem is 1 (which can be solved by the greedy algorithm).
ADAPTIVE makes the trade-off between GREEDY and
g-D&C, in terms of efficiency and accuracy, which adap-
tively decides the stopping level of the divide-and-conquer
process.

4 THE GREEDY APPROACH

In this section, we will propose a greedy algorithm, which
greedily selects one worker-and-task assignment, hwi; tji, at
a time that can maximize the increase of the assignment
score (i.e.,

P
8p2P Sp as given in Definition 4). This greedy

algorithm can be applied in line 6 of the framework,
MS-SC Framework, in Fig. 2.

4.1 The Score Increase

Before we present the greedy algorithm, we first define the
increase, DSp, of score Sp (given in Eq. (1)), in the case where
we assign a newly available worker wi to task tj. Specifi-
cally, from Eqs. (1) and (2), we define the score increase after
assigning worker wi to task tj as follows:

DSp ¼ Sp � Sp�1 ¼ DB0
j ¼

jXi \ ðYj � eYjÞj
jYjj � Bj � cij; (3)

where eYj is the set of skills that have been covered by
those assigned workers (excluding the new worker wi)
for task tj.

In Eq. (3),
jXi\ðYj�eYjÞj

jYjj is the ratio of skills for task tj that

have not been covered by (existing) assigned workers, but
can be covered by the new worker wi. Intuitively, the first
term in Eq. (3) is the pre-allocated maximum budget based
on the number of covered skills by the new worker wi,
whereas the second term, cij, is the travelling cost from loca-
tion of wi to that of tj. Thus, the score increase, DSp, in

Eq. (3) is to measure the change of score (i.e., flexible bud-
get) Sp, due to the assignment of worker wi to task tj.

4.2 Pruning Strategies

The score increase can be used as a measure to evaluate and
decide which worker-and-task assignment pair should be
added to the task assignment instance set Ip. That is, each
time our greedy algorithm aims to choose one worker-and-
task assignment pair in S with the highest score increase,
whichwill be added to Ip (i.e., line 6 ofMS-SC Framework in

Fig. 2). However, it is not efficient to enumerate all valid
worker-and-task assignment pairs in S, and compute score
increases. That is, in the worst case, the time complexity is as
high asOðm � nÞ, wherem is the number of tasks and n is the
number of workers. Therefore, in this section, we present
three effective pruning methods (two for pruning workers
and one for pruning tasks) to quickly filter out false alarms of
worker-and-task pairs in set S.

The worker-pruning strategy. When assigning available
workers to tasks, we can rule out those valid worker-and-
task pairs in S, which contain either dominated or high-wage
workers, as given in Lemmas 2 and 3, respectively, below.

We say that a worker wa is dominated by a worker wb w.r.t.
task tj (denoted as wa �tj wb), if it holds that Xa � Xb and

caj 	 cbj, where Xa and Xb are skill sets of workers wa and
wb, and caj and cbj are the travelling costs from locations of
workers wa and wb to task tj, respectively.

Lemma 2 (Pruning Dominated Workers). Given two worker-
and-task pairs hwa; tji and hwb; tji in valid pair set S, if it
holds that wa �tj wb, we can safely prune the worker-and-task

pair hwa; tji.
Proof. Please refer to Appendix B in supplementary materi-

als, available online. tu
Lemma 2 indicates that if there exists a better worker wb

than worker wa to do task tj (in terms of both the skill set

and the travelling cost), then we can safely filter out the
assignment of worker wa to task tj.

Lemma 3 (Pruning High-Wage Workers). Let ec�j be the total
travelling cost for those workers that have already been
assigned to task tj. If the travelling cost cij of assigning worker
wi to task tj is greater than the remaining budget ðBj � ec�jÞ of
task tj, we will not assign worker wi to task tj.

Proof. Please refer to Appendix C in supplementary materi-
als, available online. tu
Intuitively, Lemma 3 shows that, if the wage of a worker

wi (including the travelling cost cij) exceeds the maximum
budget Bj of task tj (i.e., cij > Bj � ec�j), then we can safely
prune the worker-and-task assignment pair hwi; tji.

The task-pruning strategy. LetWðtjÞ be a set of validworkers

that can be assigned to task tj, and gWðtjÞ be a set of validwork-
ers that have already been assigned to task tj. We give the
lemmaof pruning those taskswith insufficient budgets below.

Lemma 4 (Pruning Tasks with Insufficient Budgets). If an

unassigned worker wi 2 ðWðtjÞ � gWðtjÞÞ has the highest

value of
DSp

jXi\ðYj�eYjÞj, and the travelling cost, cij, of worker wi

CHENG ETAL.: TASK ASSIGNMENTON MULTI-SKILLORIENTED SPATIAL CROWDSOURCING 2205

exceeds the remaining budget ðBj � ec�jÞ of task tj, then we can
safely prune task tj.

Proof. Please refer to Appendix D in supplementary materi-
als, available online. tu
Intuitively, Lemma 4 provides the conditions of pruning

tasks. That is, if any unassigned worker subset of

ðWðtjÞ � gWðtjÞÞ either cannot fully cover the required skill
set Yj, or exceeds the remaining budget of task tj, then we
can directly prune all assignment pairs that contain task tj.

To summarize, by utilizing Lemmas 2, 3 and 4, we do not
have to check all worker-and-task assignments iteratively in
our greedy algorithm. Instead, we can now apply our pro-
posed three pruning methods, and effectively filter out those
false alarms of assignment pairs, which can significantly
reduce the number of times to compute the score increases.

4.3 The Greedy Algorithm

According to the definition of the score increase DSp (as
mentioned in Section 4.1), we propose a greedy algorithm,
which iteratively assigns a worker to a spatial task that can
always achieve the highest score increase.

Fig. 3 shows the pseudo code of our MS-SC greedy algo-
rithm, namely MS-SC Greedy, which obtains one worker-
and-task pair with the highest score increase each time, and
returns a task assignment instance set Ip with high score.

Initially, we set Ip to be empty, since no workers are
assigned to any tasks (line 1). Next, we find out all valid
worker-and-task pairs hwi; tji in the crowdsourcing system
at timestamp p (line 2). Here, the validity of pair hwi; tji sat-
isfies 4 conditions: (1) the distance between the current loca-
tion, liðpÞ, of worker wi and the location, lj of task tj is less
than the maximummoving distance, di of worker wi, that is,
distðliðpÞ; ljÞ � di; (2) worker wi can arrive at the location, lj,
of task tj before the arrival deadline ej; (3) worker wi have
skills that task tj requires; and (4) the travelling cost, cij, of
worker wi should not exceed the budget Bj of task tj.

Then, for each round, we would select one valid worker-
and-task assignment pair with the highest score increase,
and add it to set Ip (lines 3-16). Specifically, in each round,
we check every task tj that is involved in valid pairs hwi; tji,

and then prune those dominated and high-wage workers wi,
via Lemmas 2 and 3, respectively (lines 7-8). If workerwi can-
not be pruned by both pruning methods, then we add it to a
candidate set Scand for further checking (line 9). After obtain-
ing all workers that match with task tj, we apply Lemma 4 to
filter out task tj (if workers cannot be successfully assigned
to tj). If task tj cannot be pruned, we will calculate the score
increase, DSpðwi; tjÞ, for each pair hwi; tji in Scand; otherwise,
we remove task tj from task set Tp (lines 10-14).

After we scan all tasks in Tp, we can retrieve one worker-
and-task assignment pair, hwr; tji, from the candidate set
Scand, which has the highest score increase, and insert this
pair to Ip (line 15). Since worker wr has been assigned, we
remove it from the worker set Wp (line 16). The process
above repeats, until all workers have been assigned (i.e.,
Wp ¼ ;) or there are no tasks left (i.e., Tp ¼ ;) (line 3).

Fig. 4a illustrates an example of valid pairs, where n
available workers andm spatial tasks are denoted by rectan-
gular and circular nodes, respectively, and valid worker-
and-task pairs are represented by dashed lines. Fig. 4b
depicts the result of one assignment with high score, where
the bold lines indicate assignment pairs in Ip.

The time complexity. We next present the time complexity
of the greedy algorithm, MS-SC Greedy (in Fig. 3). Specifi-
cally, the time cost of computing valid worker-and-task
assignment pairs (line 2) is given by Oðm � nÞ in the worst
case, where any of n workers can be assigned to any of m
tasks (i.e., m � n valid worker-and-task pairs). Then, for each
round (lines 3-16), we apply pruning methods tom � n pairs,
and select the pair with the highest score increase. In the
worst case, pairs cannot be pruned, and thus the time com-
plexity of computing score increases for these pairs is given
by Oðm � nÞ. Moreover, since each of n workers can only be
assigned to one spatial task, the number of iterations is at
most n times. Therefore, the total time complexity of our

greedy algorithm can be given by Oðm � n2Þ.

5 THE g-DIVIDE-AND-CONQUER APPROACH

Although the greedy algorithm incrementally finds one
worker-and-task assignment (with the highest score
increase) at a time, it may incur the problem of only achiev-
ing local optimality. Therefore, in this section, we propose
an efficient g-divide-and-conquer algorithm (g-D&C), which
first divides the entire MS-SC problem into g subproblems,
such that each subproblem involves a smaller subgroup of
dm=ge spatial tasks, and then conquers the subproblems
recursively (until the final group size becomes 1). Since

Fig. 3. The MS-SC greedy algorithm.

Fig. 4. Illustration of the worker-and-task assignment.

2206 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016

different numbers, g, of the divided subproblems may incur
different time costs, in this paper, we will propose a novel
cost-model-based method to estimate the best g value to
divide the problem.

Specifically, for each subproblem/subgroup (containing
dm=ge tasks), we will tackle the worker-and-task assignment
problem via recursion (note: the base case with the group
size equal to 1 can be solved by the greedy algorithm [22],
which has an approximation ratio of lnðNÞ, where N is the
total number of skills). During the recursive process, we
combine/merge assignment results from subgroups, and
obtain the assignment strategy for merged groups, by
resolving the assignment conflicts among subgroups.
Finally, we can return the task assignment instance set Ip,
with respect to the entire worker and task sets.

In the sequel, we first discuss how to decompose the MS-
SC problem into subproblems in Section 5.1. Then, we will
illustrate our g-divide-and-conquer approach in Section 5.2,
which utilizes the decomposing and merging (as will be dis-
cussed in Section 5.3) algorithms. Finally, we will provide a
cost model in Section 5.4 to determine the best number g of
subproblems during the g-D&C process.

5.1 MS-SC Problem Decompositions

In this section, we discuss how to decompose a MS-SC prob-
lem into subproblems. In order to illustrate the decomposi-
tion, we first convert our original MS-SC problem into a
representation of a bipartite graph.

Bipartite graph representation of the MS-SC problem. Specifi-
cally, given a worker set Wp and a spatial task set Tp, we
denote each worker/task (i.e., wi or tj) as a vertex in the
bipartite graph, where worker and task vertices have distinct
vertex types. There exists an edge between a worker vertex
wi and a task vertex tj, if and only if workerwi can reach spa-

tial task tj under the constraints of skills (i.e., Xi \ Yj 6¼ ;),
time (i.e., arrival time is before deadline ej of arrival), dis-
tance (i.e., the travelling distance is below di), and budget
(i.e., the travelling cost is below task budget Bj). We say that
the worker-and-task assignment pair hwi; tji is valid, if there
is an edge between verticeswi and tj in the graph.

As an example in Fig. 5a, we have a worker set
Wp ¼ fwij1 � i � 5g, and a spatial task set Tp ¼ ftjj1 �
j � 3g, which are denoted by two types of vertices (i.e., rep-
resented by rectangle and circle shapes, respectively) in a
bipartite graph. Any edge connects two types of vertices wi

and tj, if worker wi can reach the location of task tj and do
tasks with the required skills from tj. For example, there
exists an edge between w1 and t1, which indicates that
worker w1 can move to the location of t1 before the arrival

deadline e1, with the travelling distance under d1, with the
travelling cost below budget B1, and moreover with some
skill(s) in the required skill set Y1 of task t1.

Note that, one or multiple worker vertices (e.g., w1, w3,
and w4) may be connected to the same task vertex (e.g., t1).
Furthermore, multiple task vertices, say t1 and t2, may also
share some conflicting workers (e.g., w3 or w4), where the
conflicting worker w3 (or w4) can be assigned to either task
t1 or task t2 mutual exclusively.

Decomposing the MS-SC problem. Next, we will illustrate
how to decompose the MS-SC problem, with respect to task
vertices in the bipartite graph. Fig. 5 shows an example of
decomposing the MS-SC problem (as shown in Fig. 5a) into
three subproblems (as depicted in Fig. 5b), where each sub-
problem contains a subgroup of one single spatial task (i.e.,
group size = 1), associated with its connected worker verti-
ces. For example, the first subgroup in Fig. 5b) contains task
vertex t1, as well as its connecting worker vertices w1, w3,
and w4. Different task vertices may have conflicting work-
ers, for example, tasks t1 and t2 share the same (conflicting)
worker vertices w3 and w4.

In a general case, given n workers and m spatial tasks, we
partition the bipartite graph into g subgroups, each of which
contains dm=ge spatial tasks, aswell as their connectingwork-
ers. Fig. 6 presents the pseudo code of our MS-SC problem
decomposition algorithm, namely MS-SC Decomposition,
which returns gMS-SC subproblems (each corresponding to a
subgroup with dm=ge tasks), Ps, after decomposing the origi-
nalMS-SCproblem.

Specifically, we first initialize g empty subproblems, Ps,
where 1 � s � g (lines 1-2). Then, we find out all valid
worker-and-task pairs hwi; tji in the crowdsourcing system

at timestamp p, which can form a bipartite graph G, where
valid pairs satisfy the constraints of skills, times, distances,
and budgets (line 3).

Next, we want to obtain one subproblem Ps at a time
(lines 4-8). In particular, for each round, we retrieve an
anchor task tj and its top-ðdm=ge � 1Þ nearest tasks, which

form a task set T ðjÞ
p of size dm=ge (line 5). Here, we choose

anchor tasks with a sweeping style, that is, we always choose
the taskwhose longitude is smallest (in the casewheremulti-
ple tasks have the same longitude, we choose the one with

smallest latitude). Then, for each task tj 2 T ðjÞ
p , we obtain its

corresponding vertex in G and all of its connecting worker
vertices wi, and add pairs hwi; tji to subproblem Ps (lines 6-
8). Finally, we return all the g decomposed subproblems Ps.

Fig. 5. Illustration of decomposing the MS-SC problem.

Fig. 6. The MS-SC problem decomposition algorithm.

CHENG ETAL.: TASK ASSIGNMENTON MULTI-SKILLORIENTED SPATIAL CROWDSOURCING 2207

5.2 The g-D&C Algorithm

In this section, we propose an efficient g-divide-and-conquer
(g-D&C) algorithm, namely MS-SC gD&C, which recur-
sively partitions the original MS-SC problem into subpro-
blems, solves each subproblem (via recursion), and merges
assignment results of subproblems by resolving the con-
flicts. We show the pseudo code ofMS-SC gD&C in Fig. 7

Specifically, in Algorithm MS-SC gD&C, we first esti-
mate the best number of groups, g, to partition, with respect
to Wp and Tp, which is based on the cost model proposed
later in Section 5.4 (line 2). Then, we will call the
MS-SC Decomposition algorithm (as mentioned in Fig. 6) to
obtain subproblems Ps (line 3). For each subproblem Ps, if
Ps involves more than one task, then we can recursively call
Algorithm MS-SC gD&C itself, by further dividing the sub-
problem Ps (lines 5-6). Otherwise, when subproblem Ps con-
tains only one single task, we apply the greedy algorithm of
the classical set cover problem for task set TpðPsÞ and
worker setWpðPsÞ (lines 7-8).

After that, we can obtain an assignment instance set IðsÞp for
each subproblem Ps, and merge them into one single worker-
and-task assignment instance set Ip, by reconciling the conflict
(lines 9-11). In particular, Ip is initially empty (line 1), and each

time merged with an assignment set IðsÞp from subproblem Ps

(lines 10-11). Due to the confliction among subproblems, we
call function MS-SC Conflict Reconcile ð�; �Þ (discussed later
in Section 5.3) to resolve the confliction issue during themerg-
ing process. Finally, we can return the merged assignment
instance set Ip (line 12).

5.3 Merging Conflict Reconciliation

In this section, we introduce the merging conflict reconcilia-
tion procedure, which resolves the conflicts while merging
assignment results of subproblems (i.e., line 11 of Procedure
MS-SC gD&C). Assume that Ip is the current assignment
instance set we have merged so far. Given a new subprob-

lem Ps with assignment set IðsÞp , Fig. 8 shows the merging

algorithm, namely MS-SC Conflict Reconcile, which com-

bines two assignment sets Ip and IðsÞp by resolving conflicts.

In particular, two distinct tasks from two subproblems
may be assigned with the same (conflicting) worker wi.
Since each worker can only be assigned to one spatial task
at a time, we thus need to avoid such a scenario when merg-
ing assignment instance sets of two subproblems (e.g., Ip
and IðsÞp). Our algorithm in Fig. 8 first obtain a set, Wc, of all

conflicting workers between Ip and IðsÞp (line 1). Then, each

time we greedily solve the conflicts for workers wi in an

non-decreasing order of the travelling cost (i.e., cij) in IðsÞp

(line 3). Next, in order to resolve the conflicts, we try to
replace worker wi with another worker w0

i (or w
00
i) in Ps (or

P) with the highest score SðsÞ
p (or Sp), and compute possible

reduction of the assignment score, DSðsÞ
p (or DSp) (lines 4-7).

Note that, here we replace worker wi with other available
workers. If no other workers are available for replacing wi,
we may need to sacrifice task tj that worker wi is assigned
to. For example, when we cannot find another worker to
replace wi in Ps, the substitute of wi will be set as an empty

worker, which means the assigned task tj for wi in IðsÞp will

be sacrificed and DSðsÞ
p ¼ B0

j (as calculated in Equation (2)).

In the case that DSp > DSðsÞ
p , we substitute worker wi with

w0
i in IðsÞp (since the replacement of wi in subproblem SðsÞ

p

leads to lower score reduction); otherwise, we resolve con-
flicts by replacing wi with w00

i in Ip (lines 8-12). After resolv-
ing all conflicts, we merge assignment instance set Ip with

IðsÞp (line 13), and return the merged result Ip.

5.4 Cost-Model-Based Estimation of the Best
Number of Groups

In this section, we discuss how to estimate the best number of
groups, g, such that the total cost of solving the MS-SC prob-
lem in g-divide-and-conquer approach isminimized. Specifi-
cally, the cost of the g-divide-and-conquer approach consists
of three parts: the cost, FD, of decomposing subproblems,
that, FC , of conquering subproblems recursively, and that,
FM , of merging subproblems by resolving conflicts.

Without loss of generality, as illustrated in Fig. 9, during
the g-divide-and-conquer process, on level k, we recursively

divide the original MS-SC problem into gk subproblems,

P
ðkÞ
1 , P

ðkÞ
2 , . . . , and P

ðkÞ
gk

, where each subproblem involves

m=gk spatial tasks.
The cost, FD, of decomposing subproblems. From Algorithm

MS-SC Decomposition (in Fig. 6), we first need to retrieve
all valid worker-and-task assignment pairs (line 3), whose
cost is Oðm � nÞ. Then, we will divide each problem into g
subproblems, whose cost is given by Oðm � gþmÞ on each

level. For level k, we have m=gk tasks in each subproblem

Fig. 7. The g-divide-and-conquer algorithm.

Fig. 8. The merging conflict reconciliation algorithm.

2208 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016

P
ðkÞ
i . We will further divide it into g more subproblems,

P
ðkþ1Þ
j , and each one will have m=gkþ1 tasks. To obtain

m=gkþ1 tasks in each subproblem P
ðkþ1Þ
j , we first need to

find the anchor task, which needs Oðm=gkÞ cost, and further

retrieve the rest tasks, which needs Oðm=gkþ1Þ cost. More-

over, since we will have gkþ1 subproblems on level kþ 1,
the cost of decomposing tasks on level k is given by
Oðm � gþmÞ.

Since there are totally loggðmÞ levels, the total cost of
decomposing the MS-SC problem is given by:

FD ¼ m � nþ ðm � gþmÞ � loggðmÞ:

The cost, FC , of recursively conquering subproblems. Let
function FCðxÞ be the total cost of conquering a subproblem
which contains x spatial tasks. Then, we have the following
recursive function:

FCðmÞ ¼ g � FC
m

g

� �� �
:

Assume that degt is the average degree of task nodes in
the bipartite group G. Then, the base case of function FCðxÞ
is the case that x ¼ 1, in which we apply the greedy algo-
rithm on just one single task and degt workers. Thus, by the
analysis of the time complexity in Section 4.3, we have:

FCð1Þ ¼ costgreedyðdegt; 1Þ ¼ deg2t :

From the recursive function FCðxÞ and its base case, we
can obtain the total cost of the recursive invocation on levels
from one to loggðmÞ below:

XloggðmÞ

k¼1

Fcðm=gkÞ ¼ 1�m

1� g
deg2t :

The cost, FM , of merging subproblems. Next, we provide the
cost, FM , of merging subproblems by resolving conflicts.
Assume that we have ns workers who could be assigned to
more than one spatial task (i.e., conflicting workers). More-
over, each worker node has an average degree degw in the
bipartite graph. During the subproblem merging process-
ing, we can estimate the worst-case cost of resolving con-
flicts for these ns workers, and we may resolve conflicts for
each worker at most ðdegw � 1Þ times.

Therefore, the worst-case cost of merging subproblems
can be given by: FM ¼ ns � ðdegw � 1Þ:

The total cost of the g-D&C approach. The total cost,
costgD&C , of the g-D&C algorithm can be given by summing
up three costs, FD, FC , and FM . That is, we have:

costgD&C ¼FD þ
XloggðmÞ

k¼1

Fcðm=gkÞ þ FM

¼ ðmgþmÞlog gðmÞ þ 1�m

1� g
deg2t þ nsðdegw � 1Þ:

(4)

We take the derivation of costgD&C (given in Eq. (4)) over
g, and let it be 0. In particular, we have:

@costgD&C

@g
¼ m log ðmÞðg log ðgÞ � g� 1Þ

g log ð2gÞ þ 1�m

ð1� gÞ2 deg
2
t ¼ 0:

(5)

We notice that when g ¼ 2,
@costgD&C

@g is much smaller than
0 but increases quickly when g grows. In addition, g can
only be an integer. Then we can try the integers, (2, 3, 4...),

until
@costgD&C

@g is above 0.

6 THE COST-MODEL-BASED ADAPTIVE

ALGORITHM

In this section, we introduce a cost-model-based adaptive
approach, which adaptively decides the strategies to apply
our proposed greedy and g-divide-and-conquer (g-D&C)
algorithms. The basic idea is as follows. Unlike the g-D&C
algorithm, we do not divide the MS-SC problem into sub-
problems recursively until task group sizes become one
(which can be solved by the greedy algorithm of set cover
problems). Instead, based on our proposed cost model,
we will partition the problem into subproblems, and
adaptively determine when to stop in some partitioning
round (i.e., the total cost of solving subproblems with the
greedy algorithm is smaller than that of continuing divid-
ing subproblems).

6.1 Algorithm of the Cost-Model-Based Adaptive
Approach

Fig. 10 shows the pseudo-code of our cost-model-based
adaptive algorithm, namely MS-SC Adaptive. Initially, we
estimate the cost, costgreedy, of applying the greedy approach
over worker/task sets Wp and Tp (line 2). Similarly, we also

Fig. 9. Illustration of the cost model estimation.

Fig. 10. The MS-SC cost-model-based adaptive algorithm.

CHENG ETAL.: TASK ASSIGNMENTON MULTI-SKILLORIENTED SPATIAL CROWDSOURCING 2209

estimate the best group size, g, and compute the cost, costgd&c

of using the g-D&C algorithm (line 3). If it holds that the cost
of the greedy algorithm is smaller than that of the g-D&C
approach (i.e., costgreedy < costgdc), then we will use the
greedy algorithm by invoking function MS-SC Greedy (�; �)
(due to its lower cost; lines 4-5). Otherwise, we will apply the
g-D&C algorithm, and further partition the problem into sub-
problems Ps (lines 6-7). Then, for each subproblem Ps, we
recursively call the cost-model-based adaptive algorithm,

and retrieve the assignment instance set IðsÞp (line 9). After

that, we merge all the assignment instance sets from subpro-
blems by invoking function MS-SC Conflict Reconcile (�; �)
(lines 10-12). Finally, we return the worker-and-task assign-
ment instance set Ip (line 13).

6.2 Cost Model for the Stopping Condition

Next, we discuss how to determine the stopping level, when
using our cost-model-based adaptive approach to recur-
sively solve the MS-SC problem. Intuitively, at the current
level k, we need to estimate the costs, costgreedy and costgdc,
of using greedy and g-D&C algorithms, respectively, to
solve the remaining MS-SC problem. If the greedy algo-
rithm has lower cost, then we will stop the divide-and-con-
quer, and apply the greedy algorithm for each subproblems.

In the sequel, we discuss how to obtain the formulae of
costs costgreedy and costgdc.

The cost, costgreedy, of the greedy algorithm. Given a set, Wp,
of n workers and a set, Tp, of m tasks, the cost, costgreedy, of
our greedy approach (as given in Fig. 3) has been discussed
in Section 4.3.

In the bipartite graph of valid worker-and-task pairs,
denote the average degree of workers as degw, and that of
tasks as degt. In Fig. 3, the computation of valid worker-
and-task pairs in line 2 needs Oðm � nÞ cost. Since there
are at most n iterations, for each round (lines 3-16), we
apply two worker-pruning methods to at most ð2m � degtÞ
pairs, and select pairs with the highest score increases,
which need Oð3m � n � degtÞ cost in total. For the cost of
task-pruning, there are totally n rounds (lines 3-16; i.e.,
removing one out of n workers in each round in line 16).
In each round, there are at most degw out of m tasks (line
5) that may be potentially pruned by Lemma 4 (line 10).
To check each of degw tasks, we need OðdegtÞ cost. There-
fore, the total cost of task-pruning is given by
Oðn � degt � degwÞ. If we cannot prune a task that was
assigned with a worker in the last round (lines 3-16),
then we need to update score increases of degt workers
for that task. Each task will be assigned with workers for
degt times. Thus, the total update cost for one task is given

by Oðdeg2t Þ (line 12). Therefore, costgreedyðn;mÞ can be
given by:

costgreedyðn;mÞ
¼ Cgreedyðm � nþ n � degtð3mþ degwÞ þm � deg2t Þ;

(6)

where parameter Cgreedy is a constant factor, which can be
inferred from cost statistics of the greedy algorithm.

The cost, costgdc, of the g-D&C algorithm. Assume that the
current g-divide-and-conquer level is k. We can modify the
cost analysis in Section 5.4, by considering the cost, costgdc,

of the remaining divide-and-conquer levels. Specifically, we
have the cost, F 0

D, of the decomposition algorithm, that is:

F 0
D ¼ m � nþ ðm � gþmÞ � k:

Moreover, when the current level is k, the cost of con-
quering the remaining subproblems is given by:

PloggðmÞ
i¼k Fcðm=giÞ:

Finally, the cost of merging subproblems is given by FM .
As a result, the total cost, costgdc, of solving the MS-SC

problem with our g-D&C approach for the remaining parti-
tioning levels (from level k to loggðmÞ) can be given by:

costgdc ¼ Cgdc � ðF 0
D þ

XloggðmÞ

i¼k

Fcðm=giÞ þ FMÞ;

where parameter Cgdc is a constant factor, which can be
inferred from time cost statistics of the g-D&C algorithm.

This way, we compare costgreedy with costgdc (as men-
tioned in line 4 of MS-SC Adaptive Algorithm). If costgreedy
is smaller than costgdc, we stop at the current level k, and
apply the greedy algorithm to tackle the MS-SC problem
directly; otherwise, we keep dividing the original MS-SC
problem into subproblems (i.e., g-D&C).

Discussions on three MS-SC approaches. The greedy
approach (GREEDY) greedily assigns workers to tasks to
maximize the increase of the assignment score in each itera-
tion, which may achieve a local optimality of the whole
problem space. The g-divide-and-conquer approach (g-D&C)
keeps dividing the original problem into g smaller subpro-
blems on each level, until the number of tasks in each sub-
problem is 1. For each one-task subproblem, we use the
state-of-the-art set cover greedy algorithm (SCGreedy) [22], a
lnðNÞ-approximation algorithm, to solve it. For each task,
the sum of the travelling costs calculated by GREEDY can-
not be less than that calculated by SCGreedy such that the
score achieved by GREEDY is less than that achieved by
SCGreedy. The reason is that, for each task, GREEDY cannot
guarantee the same “best” worker as that selected by
SCGreedy, since the “best” worker may have been assigned
to some other task. In other words, g-D&C can achieve bet-
ter local optimal results for one-task subproblems compared
with GREEDY. In addition, when we combine the results of
subproblems, we solve the conflicts and maintain these bet-
ter local optimal results. As a result, g-D&C can achieve bet-
ter assignment scores. The adaptive cost-model-based
approach trades the accuracy for the running time such that
it can run faster than g-D&C and achieve better results than
GREEDY.

7 EXPERIMENTAL STUDY

7.1 Experimental Methodology

Data sets. We use both real and synthetic data to test our
proposed MS-SC approaches. Specifically, for real data, we
use Meetup data set from [18], which was crawled from
meetup.com between Oct. 2011 and Jan. 2012. There are
5,153,886 users, 5,183,840 events, and 97,587 groups in
Meetup, where each user is associated with a location and a
set of tags, each group is associated with a set of tags, and

2210 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016

each event is associated with a location and a group who
created the event. For an event, we use the tags of the group
who creates the event as its tags. To conduct the experi-
ments on our approaches, we use the locations and tags of
users in Meetup to initialize the locations and the practiced
skills of workers in our MS-SC problem. In addition, we
utilize the locations and tags of events to initialize the loca-
tions and the required skills of tasks in our experiments.
Since workers are unlikely to move between two distant
cities to conduct one spatial task, and the constraints of time
(i.e., ej), budget (i.e., Bj) and distance (i.e., di) also prevent
workers from moving too far, we only consider those
user-and-event pairs located in the same city. Specifically,
we select one famous and popular city, Hong Kong,
and extract Meetup records from the area of Hong Kong
(with latitude from 22:209
 to 113:843
 and longitude from
22:609
 to 114:283
), in which we obtain 1,282 tasks and
3,525 workers.

For synthetic data, we generate locations of workers and
tasks in a 2D data space ½0; 1�2, following either Uniform
(UNIFORM) or Skewed (SKEWED) distribution. For Uni-
form distribution, we uniformly generate the locations of
tasks/workers in the 2D data space. Similarly, we also gen-
erate tasks/workers with the Skewed distribution by locat-
ing 90 percent of them into a Gaussian cluster (centered at

(0.5, 0.5) with variance = 0:22), and distribute the rest work-
ers/tasks uniformly. Then, for skills of each worker, we ran-
domly associate one user in Meetup data set to this worker,
and use tags of the user as his/her skills in our MS-SC sys-
tem. For the required skills of each task, we randomly select
an event, and use its tags as the required skills of the task.

For both real and synthetic data sets, we simulate the
velocity of each worker with Gaussian distribution within
range ½v�; vþ�, for v�; vþ 2 ð0; 1Þ. For the unit price, Ci, w.r.t.
the travelling distance of each worker, we generate it fol-
lowing the Uniform distribution within the range ½C�; Cþ�.
Furthermore, we produce the maximum moving distance of
each worker, following the Uniform distribution within the
range ½d�; dþ� (for d�; dþ 2 ð0; 1Þ). For temporal constraints
of tasks, we also generate the arrival deadlines of tasks, e,
within range ½rt�; rtþ� with Gaussian distribution. Finally,
we set the budgets of tasks with Gaussian distribution
within the range ½B�; Bþ�. Here, for Gaussian distributions,
we linearly map data samples within ½�1; 1� of a Gaussian

distribution Nð0; 0:22Þ to the target ranges.
MS-SC approaches and measures. We conduct experiments

to compare our three approaches, GREEDY, g-D&C and
ADAPTIVE, with a random method, namely RANDOM,
which randomly assigns workers to tasks.

In particular, GREEDY selects a “best” worker-and-task
assignment with the highest score increase each time, which
is a local optimal approach. The g-D&C algorithm keeps
dividing the problem into g subproblems on each level, until
finally the number of tasks in each subproblem is 1 (which
can be solved by the greedy algorithm on each one-task sub-
problem). Here, the parameter g can be estimated by a cost
model to minimize the computing cost. The cost-model-base
adaptive algorithm (ADAPTIVE) makes the trade-off
between GREEDY and g-D&C, in terms of efficiency and
accuracy, which adaptively decides the stopping level of
the divide-and-conquer. To evaluate our three proposed

approaches, we need to compare the results with ground
truth. However, as proved in Section 2.4, theMS-SC problem
is NP-hard, and thus infeasible to calculate the real optimal
result as the ground truth. Alternatively, we will compare
the effectiveness of our three approaches with that of a ran-
dom (RANDOM) method, which randomly chooses a
worker, and then randomly assigns him/her to a task that
he/she can satisfy its constraints and the required skills. For
each MS-SC instance, we run RANDOM for 10 times, and
report the highest score. We also conducted comparison
experiments on a small dataset to show that the results
achieved by our three approaches are close to the optimal
results. Due to the space limitation, please refer to Appendix
H of supplementarymaterials, available online.

Table 4 depicts our experimental settings, where the
default values of parameters are in bold font. In each set of
experiments, we vary one parameter, while setting other
parameters to their default values. For each experiment, we
report the running time and the assignment score of our tes-
ted approaches. The trend w.r.t. the number of the com-
pleted tasks is similar to that of the assignment score. Due
to space limitations, please refer to experimental results for
the number of the completed tasks in Appendix I of supple-
mentary materials, available online. All our experiments
were run on an Intel Xeon X5675 CPU @3.07 GHZ with 32
GB RAM in Java.

7.2 Experiments on Real Data

In this section, we show the effects of the range of task
budgets ½B�; Bþ�, the range of workers’ velocities ½v�; vþ�,
and the range of unit prices w.r.t. distance ½C�; Cþ�.

Effect of the range of task budgets ½B�; Bþ�. Fig. 11 illustrates
the experimental results on different ranges, ½B�; Bþ�, of
task budgets Bj from ½1; 5� to ½20; 25�. In Fig. 11a, the assign-
ment scores of all the four approaches increase, when the
value range of task budgets gets larger. When the average
budgets of tasks increase, the flexible budget B0 of each task
will also increase. g-D&C and ADAPTIVE can achieve
higher score than GREEDY. In contrast, RANDOM has
the lowest score, which shows that our proposed three
approaches are more effective. As shown in Fig. 11b, the
running times of our three approaches increase, when
the range of task budgets becomes larger. The reason is that,

TABLE 4
Experiments Settings

Parameters Values

the number of
tasksm

1K, 2K, 5K, 8K, 10K

the number of
workers n

1K, 2K, 5K, 8K, 10K

the task budget
range ½B�; Bþ�

[1, 5], [5, 10], [10, 15], [15, 20], [20, 25]

the velocity
range ½v�; vþ�

[0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]

the unit price w.r.t.
distance ½C�; Cþ�

[10, 20], [20, 30], [30, 40], [40, 50]

the moving distance
range ½d�; dþ�

[0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]

the expiration time
range ½rt�; rtþ�

[0.25, 0.5], [0.5, 1], [1, 2], [2, 3], [3, 4]

CHENG ETAL.: TASK ASSIGNMENTON MULTI-SKILLORIENTED SPATIAL CROWDSOURCING 2211

when Bj 2 ½B�; Bþ� increases, each task has more valid
workers, which thus leads to higher complexity of the MS-
SC problem and the increase of the running time. RAN-
DOM is the fastest (however, with the lowest assignment
score), since it does not even need to find local optimal
assignment. ADAPTIVE achieves much lower running time
than g-D&C (a bit higher time cost than GREEDY), but has
comparable score with g-D&C (much higher score than
GREEDY), which shows the good performance of ADAP-
TIVE, compared with GREEDY and g-D&C. The requesters
provide budgets to support the travelling costs of workers.
Higher travelling budget can support workers located in
farther locations, which means more worker candidates that
can reach the task.

Effect of the workers’ velocity range ½v�; vþ�. Fig. 12 reports
the effect of the range of velocities, ½v�; vþ�, of workers over
real data. As shown in Fig. 12a, when the range of velocities
increases from ½0:1; 0:2� to ½0:2; 0:3�, the scores of all the
approaches first increase; then, they stop growing for the
velocity range varying from [0.2, 0.3] to [0.4, 0.5]. The reason
is that, at the beginning, with the increase of velocities,
workers can reach more tasks before their arrival deadlines.
Nevertheless, workers are also constrained by their maxi-
mum moving distances, which prevents them from reach-
ing more tasks. ADAPTIVE can achieve a bit higher scores
than g-D&C, and much better assignment scores than
GREEDY.

In Fig. 12b, when the range of velocity ½v�; vþ� increases,
the running times of our tested approaches also increase,
due to the cost of more valid worker-and-task pairs to be
handled. For RANDOM, in each iteration, it may need more
time to eliminate the invalid pairs caused by the newly
assigned worker-and-task pairs, which leads to the increase
of the total running time. Similar to previous results, RAN-
DOM is the fastest, and g-D&C is the slowest. ADAPTIVE
requires about 0.5-1.5 seconds, and has lower time cost
than g-D&C, which shows the efficiency of our proposed
approaches.

Effect of the range of unit prices w.r.t. travelling distance
½C�; Cþ�. In Fig. 13a, when the unit prices w.r.t. travel-
ling distance Ci 2 ½C�; Cþ� increase, the scores of all the
approaches decrease. The reason is that, when the range
of unit prices ½C�; Cþ� increases, we need to pay more
wages containing the travelling costs of workers (to do
spatial tasks), which in turn decreases the flexible budget
of each task. However, ADAPTIVE can still achieve the
highest score among all four approaches; scores of
g-D&C are close to the scores of ADAPTIVE and higher
than GREEDY.

In Fig. 13b, when the range of unit prices, ½C�; Cþ�, of the
travelling cost increases, the number of valid worker-and-
task pairs decreases, and thus the running time of all the
approaches also decreases. Our ADAPTIVE algorithm is
faster than g-D&C, and slower than GREEDY. On a real
platform, the unit price value can be set by the platform
based on the gas price and the gas consumption per mile for
specific vehicles, which can be estimated with existing
methods [20] on the fly.

In addition, we also tested the effects of the range,
½d�; dþ�, of maximum moving distances for workers, and
the expiration time range, ½rt�; rtþ�, of tasks over the real
data set, Meetup. Due to space limitations, please refer to
experimental results with respect to other parameters (e.g.,
½d�; dþ� and ½rt�; rtþ�) in Appendix F of supplementary
materials, available online.

From experimental results on the real data above, ADAP-
TIVE can achieve higher scores than Greedy and g-D&C,
and it is faster than g-D&C and slower than GREEDY.
Although g-D&C can achieve good scores close to ADAP-
TIVE, it is the slowest among all the four approaches.

7.3 Experiments on Synthetic Data

In this section, we test the effectiveness and robustness of
our three MS-SC approaches, GREEDY, g-D&C, and ADAP-
TIVE, compared with RANDOM, by varying the number of
tasks m and the number of workers n on synthetic data sets.
Due to space limitations, we present the experimental
results for tasks/workers with Uniform distributions. For
similar results with tasks/workers following skewed distri-
butions, please refer to Appendix G in supplementary mate-
rials, available online.

Effect of the number of tasks m. Fig. 14 illustrates the effect
of the number, m, of spatial tasks, by varying m from 1K to
10K, over synthetic data sets, where other parameters are
set to default values. For assignment scores in Fig. 14a,
g-D&C obtains results with the highest scores among all the
four approaches. ADAPTIVE performs similar to g-D&C,Fig. 12. Effect of the range of velocities ½v�; vþ� (real data).

Fig. 13. Effect of the range of unit prices w.r.t. travelling distance ½C�; Cþ�
(real data).Fig. 11. Effect of the range of task budgets ½B�; Bþ� (real data).

2212 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016

and achieves good results similar to g-D&C. GREEDY is not
as good as g-D&C and ADAPTIVE, but is still much better
than RANDOM. When the number, m, of spatial tasks
becomes larger, all our approaches can achieve higher
scores.

In Fig. 14b, when m increases, the running time also
increases. This is because, we need to deal with more
worker-and-task assignment pairs for large m. The ADAP-
TIVE algorithm is slower than GREEDY, and faster than
g-D&C. In addition, we find that the running time of
GREEDY performs, with the same trend as that estimated in
our cost model (as given in Eq. (6)).

Effect of the number of workers n. Fig. 15 shows the experi-
mental results with different numbers of workers, n, from
1 K to 10 K over synthetic data, where other parameters
are set to their default values. Similar to previous results
about the effect of m, in Fig. 15a, our proposed three
approaches can obtain good results with high assignment
scores, compared with RANDOM. Moreover, when the
number, n, of workers increases, the scores of all our
approaches also increase. The reason is that, when n
increases, we have more potential workers, who can be
assigned to nearby tasks, which may lead to even larger
scores.

In Fig. 15b, the running time of our approaches increases,
with the increase of the number of workers. This is due to
higher cost to process more workers (i.e., larger n). Simi-
larly, ADAPTIVE has higher time cost than GREEDY, and
lower time cost than g-D&C.

In summary, over synthetic data sets, our ADAPTIVE
algorithm trades the accuracy for efficiency, and thus has
the trade-off of scores/times between GREEDY and g-D&C.

8 RELATED WORK

Spatial crowdsourcing. Without considering the location
information in crowdsourcing, previous works [6], [12], [25]
studied the task assignment to achieve better accuracy, and
prior works [7], [24] studied how to select a proper worker
set for a particular task. Prior works like [5], [13] usually
studied crowdsourcing problems, which treat the location
information as a parameter and distribute tasks to workers.
In these problems, workers are not required to accomplish
tasks on sites. In our MS-SC problem, we focus on finding
an assignment such that the spatial (e.g., maximum moving
distances of worker) and temporal (e.g., the arrival dead-
lines of tasks) constraints can be met, the skills required by
the tasks can be supported by workers, and the assignment
score is maximized. Thus the existing methods cannot be
directly applied.

The spatial crowdsourcing platform [16] requires work-
ers to physically move to some specific locations, and per-
form the requested services, such as taking photos/videos,
waiting in line at shopping malls, and decorating a room.
As an example, some previous works [10], [14] studied the
small-scale or specified campaigns benefiting from partici-
patory sensing techniques, which utilize smart devices
(equipped by workers) to sense/collect data for real
applications.

Kazemi and Shahabi [16] classified the spatial crowd-
sourcing systems from two perspectives: people’s motiva-
tion and publishing models. From the perspective of
people’s motivation, the spatial crowdsourcing can be cate-
gorized into two groups: reward-based, in which workers
can receive rewards according to the services they supplied,
and self-incentivised, in which workers conduct tasks vol-
untarily. In our work, we study our MS-SC problem based
on the reward-based model, where workers are paid for
doing tasks. However, with a different goal, our MS-SC
problem targets at assigning workers to tasks by using our
proposed algorithms, such that the required skills of tasks
can be covered, and the total reward budget (i.e., flexible
budget B0

j in Eq. (2)) can be maximized. Note that, we can
embed incentive mechanisms from existing works [19], [23]
into our MS-SC framework to distribute rewards (flexible
budgets) among workers, which is however not the focus of
our problem.

According to the publishing modes of spatial tasks, the
spatial crowdsourcing can be also classified into two catego-
ries: worker selected tasks (WST) and server assigned tasks
(SAT) [16]. In particular, for the WST mode, spatial tasks are
broadcast to all workers, and workers can select any tasks
by themselves. In contrast, for the SAT mode, the spatial
crowdsourcing server will directly assign tasks to workers,
based on location information of tasks/workers.

Some prior works [5], [11] on the WST mode allowed
workers to select available tasks, based on their personal
preferences. However, for the SAT mode, previous works
focused on assigning available workers to tasks in the sys-
tem, such that the number of assigned tasks on the server
side [16], the number of worker’s self-selected tasks on the
client side [11], or the reliability-and-diversity score of
assignments [9] is maximized.

In particular, Cheng et al. [9] tackles the problem of reli-
able diversity-based spatial crowdsourcing (RDB-SC), which
finds a worker-and-task assignment strategy that maximizes
the assignment score (w.r.t. spatial/temporal diversity and
reliability of tasks). In contrast, ourMS-SC problem has a dif-
ferent, yet more general, goal, which involves multi-skilled
workers and complex tasks with the required skills (not

Fig. 15. Effect of the number of workers n (synthetic data).Fig. 14. Effect of the number of tasksm (synthetic data).

CHENG ETAL.: TASK ASSIGNMENTON MULTI-SKILLORIENTED SPATIAL CROWDSOURCING 2213

studied before), and aims to maximize a different assign-
ment score (i.e., flexible budget, given by the total budget of
the completed tasks minus the total travelling cost of work-
ers). In addition, our MS-SC problem also needs to consider
several constraints, such as skill-covering, budget, time, and
distance constraints, which make our problem more
challenging.

Due to different assignment goals between RDB-SC [9]
and MS-SC, we cannot directly borrow previous techniques
such as [9], [11], [16] to tackle the MS-SC problem. For
instance, the greedy algorithm should design effective
approach to find one assignment each time with the highest
increase of flexible budget in our MS-SC problem (rather
than highest reliability and diversity as discussed in RDB-SC
[9]); for g-D&C, we propose an effective cost model to deter-
mine the best g value to maximize the MS-SC performance
(instead of always dividing the problem into 2 subproblems
in [9]); most importantly, we also propose a novel cost-
model-based adaptive algorithm,which combines the greedy
and g-D&C algorithms based on our cost model that can
adaptively estimate the stopping level of the recursive divi-
sion, minimizing the total computation cost, which have not
been studied by previousworks.

Set cover problem. The set cover problem (SCP) is a classical
NP-hard problem, which targets at choosing a set of subsets
to cover a universe set, such that the number of the selected
subsets is minimized. SCP is actually a special case of our
MS-SC problem, in which there exists only one spatial task.
However, in most situations, we have more than one spatial
task in the spatial crowdsourcing system. A variant of SCP
is the weighted set cover problem, which associates each subset
with a weight. The well-known greedy algorithm [22] can
achieve an approximation ratio of lnðNÞð� HðNÞ here

HðNÞ ¼ PN
i¼1 1=iÞ, where N is the size of the universe set.

Sun and Li [21] studied set cover games problem, which covers
multiple sets. However, they focused on designing a good
mechanism to enable each single task to obtain a local opti-
mal result. In contrast, our work aims to obtain a global
optimal solution to maximize the score of assignment.

Different from SCP and its variants that cover only one
universe set, our MS-SC problem is targeting to cover multi-
ple sets, such that the assignment score is maximized. Fur-
thermore, our MS-SC problem is also constrained by
budget, time, and distance, which is much more challenging
than SCP. To the best of our knowledge, no prior works on
SCP (and its variants) have studied the MS-SC problem,
and existing techniques cannot be used directly to tackle the
MS-SC problem.

9 CONCLUSION

In this paper, we propose the problem of the multi-skill ori-
ented spatial crowdsourcing (MS-SC), which assigns the time-
constrained and multi-skill-required spatial tasks with
dynamically moving workers, such that the required skills
of tasks can be covered by skills of workers and the assign-
ment score is maximized. We prove that the processing of
the MS-SC problem is NP-hard, and thus we propose three
approximation approaches (i.e., greedy, g-D&C, and cost-
model-based adaptive algorithms), which can efficiently
retrieve MS-SC answers. Extensive experiments have shown

the efficiency and effectiveness of our proposed MS-SC
approaches on both real and synthetic data sets.

ACKNOWLEDGMENTS

The work is supported partially by Hong Kong RGC Project
N HKUST637/13, NSFC Guang Dong Grant No. U1301253,
National Grand Fundamental Research 973 Program of
China under Grant 2014CB340303, Microsoft Research Asia
Gift Grant, Google Faculty Award 2013, and NSFC under
Grant No. 61325013, 61572396, and 61373175.

REFERENCES

[1] (2016). Foursquare [Online]. Available: https://foursquare.com
[2] (2016). Google street view [Online]. Available: https://www.

google.com/maps/views/streetview
[3] (2016). Taskrabbit [Online]. Available: https://www.taskrabbit.

com
[4] (2016). Waze [Online]. Available: https://www.waze.com
[5] F. Alt, A. S. Shirazi, A. Schmidt, U. Kramer, and Z. Nawaz,

“Location-based crowdsourcing: Extending crowdsourcing to the
real world,” in Proc. 6th Nordic Conf. Human-Comput. Interaction:
Extending Boundaries, 2010 pp. 13–22.

[6] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and
W.-C. Tan, “Asking the right questions in crowd data sourcing,” in
Proc. IEEE 28th Int. Conf. Data Eng., 2012 pp. 1261–1264.

[7] C. C. Cao, J. She, Y. Tong, and L. Chen, “Whom to ask?: Jury selec-
tion for decision making tasks on micro-blog services,” in Proc.
VLDB Endowment, 2012, vol. 5, no. 11, pp. 1495–1506.

[8] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C.
Cao, and Y. Tong, “Gmission: A general spatial crowdsourcing
platform,” in Proc. VLDB Endowment, 2014, vol. 7, no. 13,
pp. 1629–1632.

[9] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and J. Zhao,
“Reliable diversity-based spatial crowdsourcing by moving
workers,” in Proc. VLDB Endowment, 2015, vol. 8, no. 10, pp. 1022–
1033.

[10] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, and M. Shin,
“Anonysense: Privacy-aware people-centric sensing,” in Proc. 6th
Int. Conf. Mobile Syst., Appl. Services, 2008 pp. 211–224.

[11] D. Deng, C. Shahabi, and U. Demiryurek, “Maximizing the num-
ber of worker’s self-selected tasks in spatial crowdsourcing,” in
Proc. 21st ACM SIGSPATIAL Int. Conf. Adv. Geographic Inform.
Syst.,2013, pp. 324–333.

[12] J. Fan, G. Li, B. C. Ooi, K.-l. Tan, and J. Feng, “iCrowd: An adap-
tive crowdsourcing framework,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data ,2015, pp. 1015–1030.

[13] Z. B. G. L. J. F. Huiqi Hu, Y. Zheng, and R. Cheng, “Crowd-
sourced poi labelling: Location-aware result inference and task
assignment,” 32nd IEEE Int. Conf. Data Eng., May 2016.

[14] S. S. Kanhere, “Participatory sensing: Crowdsourcing data from
mobile smartphones in urban spaces,” in Proc. 12th IEEE Int. Conf.
Mobile Data Manage., 2011 pp. 3–6.

[15] R. M. Karp, Reducibility Among Combinatorial Problems. Berlin, Ger-
many: Springer, 1972.

[16] L. Kazemi and C. Shahabi, “Geocrowd: Enabling query answering
with spatial crowdsourcing,” in Proc. 20th Int. Conf. Adv. Geo-
graphic Inform. Syst., 2012 pp. 189–198.

[17] S. H. Kim, Y. Lu, G. Constantinou, C. Shahabi, G. Wang, and R.
Zimmermann, “Mediaq: Mobile multimedia management sys-
tem,” in Proc. ACMMMSys,2014, pp. 224–235.

[18] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and J. Han,
“Event-based social networks: Linking the online and offline
social worlds,” in Proc. ACM SIGKDD, 2012 pp. 1032–1040.

[19] J. P. Rula, V. Navda, F. E. Bustamante, R. Bhagwan, and S. Guha,
“No one-size fits all: Towards a principled approach for incentives
in mobile crowdsourcing,” in Proc. 15th Workshop Mobile Comput.
Syst. Appl., 2014, pp. 16–20, Art. no. 3.

[20] S. Song, A. Zhang, J. Wang, and P. S. Yu, “Screen: Stream data
cleaning under speed constraints,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2015 pp. 827–841.

[21] Z. Sun, X.-Y. Li, W. Wang, and X. Chu, “Mechanism design for set
cover games when elements are agents,” in Proc. 1st Int. Conf.
Algorithmic Appl. Manage., 2005 pp. 360–369.

2214 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016

[22] V. V. Vazirani, Approximation Algorithms. Berlin, Germany:
Springer, 2013.

[23] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smart-
phones: Incentivemechanismdesign formobile phone sensing,” in
Proc. 18th Annu. Int. Conf. Mobile Comput. Netw., 2012 pp. 173–184.

[24] Y. Zheng, R. Cheng, S. Maniu, and L. Mo, “On optimality of jury
selection in crowdsourcing,” in Proc. 18th Int. Conf. Extending
Database Technol., 2015 pp. 193–204.

[25] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng, “Qasca: A
quality-aware task assignment system for crowdsourcing
applications,” presented at the ACM SIGMOD, Victoria, Australia,
pp. 1031–1046, 2015.

Peng Cheng received the BS and the MA
degrees in software engineering in 2012 and
2014, respectively, from Xi’an Jiaotong University,
China. He is currently working towards the PhD
degree in the Department of Computer Science
and Engineering at Hong Kong University of Sci-
ence and Technology. His research interests
include crowdsourcing and spatial crowdsourcing.

Xiang Lian received the BS degree from the
Department of Computer Science and Technology,
Nanjing University, and the PhD degree in com-
puter science from the Hong Kong University of
Science and Technology. He is now an assistant
professor in the Computer Science Department at
the University of Texas Rio Grande Valley. His
research interests include probabilistic/uncertain/
inconsistent, uncertain/certain graph, time-series,
and spatial databases.

Lei Chen received the BS degree in computer
science and engineering from Tianjin University,
China, in 1994, the MA degree from the Asian
Institute of Technology, Thailand, in 1997, and
the PhD degree in computer science from the
University of Waterloo, Canada, in 2005. He is
now an associate professor in the Department of
Computer Science and Engineering at the Hong
Kong University of Science and Technology. His
research interests include crowdsourcing, uncer-
tain and probabilistic databases, multimedia and

time series databases, and privacy. He is a member of the IEEE.

Jinsong Han received the PhD degree in com-
puter science from the Hong Kong University of
Science and Technology in 2007. He is a member
of the CCF, ACM, and IEEE. His research inter-
ests focus on mobile computing, RFID, and wire-
less network.

Jizhong Zhao received his PhD degree in com-
puter science and technology from Xi’an Jiaotong
University in 2001. He is a member of the CCF,
ACM, and IEEE. His research interests focus on
computer software, pervasive computing, distrib-
uted systems, network security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHENG ETAL.: TASK ASSIGNMENTON MULTI-SKILLORIENTED SPATIAL CROWDSOURCING 2215

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

