
A Queueing-Theoretic Framework for
Vehicle Dispatching in Dynamic Car-Hailing

Peng Cheng
HKUST

Hong Kong, China

pchengaa@cse.ust.hk

Chao Feng
AI Labs, DiDi Chuxing

Beijing, China

fengchaodavid@didichuxing.com

Lei Chen
HKUST

Hong Kong, China

leichen@cse.ust.hk

Zheng Wang
AI Labs, DiDi Chuxing

Beijing, China

wangzhengzwang@didiglobal.com

Abstract—With the rapid development of smart mobile devices,
the car-hailing platforms (e.g., Uber or Lyft) have attracted
much attention from both the academia and the industry. In this
paper, we consider an important dynamic car-hailing problem,
namely maximum revenue vehicle dispatching (MRVD), in which
rider requests dynamically arrive and drivers need to serve as
many riders as possible such that the entire revenue of the
platform is maximized. We prove that the MRVD problem is
NP-hard and intractable. To handle the MRVD problem, we
propose a queueing-based vehicle dispatching framework, which
first uses existing machine learning algorithms to predict the
future vehicle demand of each region, then estimates the idle
time periods of drivers through a queueing model for each
region. With the information of the predicted vehicle demands
and estimated idle time periods of drivers, we propose one batch-
based vehicle dispatching algorithm to efficiently assign suitable
drivers to riders such that the expected entire revenue of the
platform is maximized during each batch processing. Through
experiments over real data sets, we demonstrate the efficiency
and effectiveness of our proposed framework.

I. INTRODUCTION

Recently, with the popularity of the smart devices and high

quality of the wireless networks, people can easily access

network and communicate with online services. With the

convenient car-hailing platforms (e.g., Uber [4] and DiDi

Chuxing [1]), drivers can share their vehicles to riders to

obtain monetary benefits and alleviate the pressure of public

transportation. One of the crucial issues in the platforms is

to efficiently dispatch vehicles to suitable riders. Although the

platforms have become huge recently, during peak hours (e.g.,

8 am) in some high demand areas (e.g., residential areas),

riders need to wait for up to several hours before being served.

To mitigate the shortage of vehicles in particular time and areas

and improve the efficiency of the platforms, we investigate a

queueing-theoretic dispatching framework in this paper, which

aims to take riders’ destinations into consideration to alleviate

the shortage of taxis in particular areas such that the overall

revenue of the platform can be maximized. Existing works in

spatial matching or taxi dispatching only consider the pickup

locations of riders and try to minimize the travel distance of

taxis to pick riders [12], [10], which causes that some taxis will

be hard to pick up new convenient riders after their last riders

unless move long distances to far away riders and results in

the low efficiency of the platform. In [6], the authors focused

on improve the experience of riders through maximizing their

utility. In [16], authors utilize auction mechanism to use the

vehicle resources more efficiently in rush hours.

In this paper, we propose a batch-based queueing-theoretic
vehicle dispatching framework. Specifically, we partition the

whole space into regions and maintain a queue of waiting

riders and drivers for each region. Once there are available

drivers, the most-priority rider in the queue of waiting riders

will be served. We first propose models to estimate the

Poisson distributions of riders and drivers, then utilize the

queueing theory to analyze the idle time interval for each

driver after finishing his/her assigned rider. Finally, we propose

one vehicle/driver dispatching algorithms to maximize the

overall revenue of the platform in each batch processing.

Note that, we maximize the overall revenue of the platform

through improving the efficiency of the entire platform without

increasing the charges to riders or decreasing the payment to

drivers. In fact, the payment to drivers is usually a portion of

the overall revenue of the platform. Thus, the more the overall

revenue of the platform is, the more the payment to drivers is.

In conclusion, our solution will benefit riders, drivers and the

platform at the same time. In this paper, we proposed a batch-

based queueing theoretic framework for vehicle dispatching

in Section III, and conducted experiments on real data sets to

show the efficiency and effectiveness of our queueing-theoretic

framework in Section IV.

II. PROBLEM DEFINITION

In this paper, we use a graph G = 〈V,E〉 to represent a

road network, where V is a set of vertices and E is a set

of edges. Each edge (u, v) ∈ E (u, v ∈ V) is associated

with a weight cost(u, v) indicating the travel cost from vertex

u to vertex v. Here the travel cost could be the travel time

or the travel distance. When we know the travel speed of

vehicles, we can easily convert one to another. In the rest

of this paper, we will not differentiate between them and

use travel cost consistently. To better manage the riders and

drivers, we assume the entire space is divided into a set of n
regions/grids A = {a1, a2, ..., an}.
Definition 1. (Rider) Let ri be a rider, who submit his/her

order oi to the platform at timestamp ti, and is associated with

a source location si, a destination location ei and a pickup

deadline τi.

1622

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00157

If a rider ri is delivered to his/her destination, the platform

will charge him/her for α · cost(si, ei), where α is the travel

fee rate of the platform.

Definition 2. (Driver) Let dj be a driver, who is located

position lj(t) at timestamp t. Her status is either busy (i.e.,

on delivering any rider) or available (i.e., free to be assigned

to a rider).

For region ak at timestamp t, we denote the set of available

drivers as Dk(t) and the number of them as |Dk(t)|.
Definition 3. (Valid Rider-and-Driver Dispatching Pair) Let

〈ri, dj〉 be a valid rider-and-driver dispatching pair, where

driver dj can arrive at the pickup location si of rider ri before

the pickup deadline τi and driver dj is in available status when

he/she is picking up rider ri.

Definition 4. (Maximum Revenue Vehicle Dispatching Prob-

lem, MRVD) For a given time period T, a set of riders RT

and a set of drivers DT may dynamically join or leave the

platform. The MRVD problem is to select a set, IT, of valid

rider-and-driver dispatching pairs such that the overall revenue

of the platform is maximized, which is:

max
∑

〈ri,dj〉∈IT
α · cost(si, ei), (1)

where α is the travel fee rate of the platform.

Hardness of MRVD. MRVD is NP-hard through a reduction

from the 0-1 Knapsack problem [13], which is a well know

NP-hard problem. In short, for each given 0-1 Knapsack

problem, we can translate it to a MRVD problem through

careful construct a special road network. In detail, for a given

item i in 0-1 Knapsack problem, we can generate a rider ri,
such that the travel cost to serve the rider is equal to the cost of

item i and the revenue is equal to the value of item i. Then, we

let there is only one driver and each time after he/she finishes

one ride request, he/she must come back to the center node as

the constraint of the road network. Thus, MRVD is NP-hard.

Reduction of MRVD. We introduce a reduction to reveal

practical rules to dispatching drivers to maximize the overall

revenue of the platform. Let Tj be the lifetime of driver dj
from the time he/she joins to the time he/she exits the platform.

We notice that only when driver dj is busy, he/she contributes

to the overall revenue of the platform. Then we can rewrite

the objective function of MRVD as below:

max
∑

〈ri,dj〉∈IT
α · cost(si, ei)

⇒max
∑

dj∈DT

∑

ri∈Rj

α · cost(si, ei)

⇒maxα
∑

dj∈DT

∑

ri∈Rj

cost(si, ei) (2)

where DT is the set of drivers on the platform during the

given time period T, and Rj is the set of riders that are

served by driver dj . According to Equation 2, the platform

should maximize the length of the total busy time of each

Fig. 1. Illustration of the Framework Work Flow.

driver to maximize its overall revenue. Since the lifetime Tj
of each driver dj is fixed, to maximize his/her total busy time,∑

ri∈Rj
cost(si, ei), is equivalent to minimize his/her total

idle time, Tj −
∑

ri∈Rj
cost(si, ei). Then, the objective of

MRVD can be rewritten as follows:

min
∑

dj∈DT

(
Tj −

∑

ri∈Rj

cost(si, ei)
)⇒ min

∑

dj∈DT

|Rj |∑

i=0

ψij

(3)

where ψij is the idle time of driver dj after delivering rider ri.
Here ψ0j indicates the idle time of driver dj before picking

up his/her first rider.

According to Equation 3, to maximize the overall revenue,

the platform intuitively should reduce the number of served

riders (e.g., |Rj |) and the time interval (e.g., ψij) between any

two consecutive riders for each driver. Then, we can have two

practical and controllable rules for the platform to maximize

its overall revenue during a given time period T: a) associating
higher priorities to the riders whose travel costs are high;
b) reducing the length of the idle time between serving any
two consecutive riders for each driver.

III. QUEUEING-BASED DISPATCHING FRAMEWORK

In this section, we introduce an overview of our queueing-

based vehicle dispatching framework. Figure 1 shows the

overall work flow of the platform.

A. Offline Vehicle Demand-Supply Prediction

In practice, it is hard to predict the accurate location and

timestamp of a particular rider or driver since the uncertain

behaviors of a single user. To utilize the distribution of demand

and supply of riders, we predict the number of riders and

drivers for a given region (i.e., a spatial range of area, such

as square regions or hexagon regions) in a given time period

(i.e., next 5 minutes). For the rejoined drivers, we can easily

estimate their availability based on their assignments and travel

costs. For the newly coming riders, existing work can be ap-

plied offline to predict the demand of riders, such as demand-

supply prediction of traffic [9], [7], and spatial-temporal data

prediction [14], [8]. In this paper, we tested the representative

state-of-the-art prediction algorithms on the real-world taxi

1623

demand-supply data set and select the most effective one [15]

for our offline Vehicle demand-supply prediction process.

B. Region Queueing Analysis

The available drivers in a region ax in a time period Ty

comes from the rejoined active drivers. With the predicted

numbers of orders for the region ax in a given time period Ty

and the schedules of active drivers, we can know the demand

and supply of drivers for the region ax in time period Ty .

Similar to the previous assumption in the related work [5],

we assume that the arrivals of rejoined active drivers follow

the Poisson distribution with rates λx in a region ax during a

short time period Ty with length tc = |Ty| (e.g., a half hour).

In addition, we also model the arrival rate of riders (in number

per minute) follow a Poisson distribution with a rate of μx in

a region ax during a short time period with length tc. Note

that, although the arrival rate of riders and drivers may change

during different time periods in a day (e.g., 8 to 9 A.M. and 8

to 9 P.M.), to facilitate the analysis of the queueing situation

in a short time period, we model the arrival rates of riders and

drivers as stable rates.

According to the queueing theory [11], when λx < μx,

the average length Lx of waiting drivers in region ax can

be estimated through Lx = ρ2

1−ρ , where ρ = λx

μx
. Then, the

average waiting time of each driver is ET (λx, μx) = Lx

λx
=

λx

μx(μx−λx)
. In our framework, we avoid assigning too many

drivers to region ax such that λx is always smaller than μx.

C. Queueing-Based Vehicle Dispatching

In this part, we iteratively assign drivers to riders every

Δ seconds. To solve the assignment problem in each batch,

we propose one heuristic algorithm to greedily maximize the

revenue summation of the platform for the current scheduling

time period [t̄, t̄+ tc], where t̄ indicates the current timestamp

and tc is the length of the current scheduling time period.

Specifically, the current scheduling time period [t̄, t̄ + tc] is

a time period where we consider the arrivals of drivers and

riders follow Poisson distributions for each region.
We propose an idle ratio oriented greedy approach to solve

each batch process with a goal to maximize the revenue
summation of the platform during the current scheduling time
period [t̄, t̄+tc], where t̄ is the current timestamp and tc is the
length of the current scheduling time window. We first define
the idle ratio of driver dj to server rider ri, whose destination
ei is in region ak, as follows:

IR(ri, dj) =
ET (λ(k), μ(k))

cost(si, ei) + ET (λ(k), μ(k))
, (4)

where ET (λ(k), μ(k)) is the expected idle time of driver dj
when he/she rejoins the platform at region ak, and cost(si, ei)
is the travel cost (travel time) on serving rider ri. We notice

that when the travel cost cost(si, ei) increases, IR(ri, dj)
will decrease; when the expected idle time ET (λ(k), μ(k))
increases, IR(ri, dj) will also decrease. As a result, we only

need to greedily select the rider-and-driver dispatching pairs

with low idle ratio, then we can follow the two guiding rules

in the end of Section II to maximize the overall revenue of

Algorithm 1: Idle Ratio Oriented Greedy Algorithm

Input: A set of Regions A, current timestamp t̄
Output: A set of rider-and-driver dispatching pairs It̄

1 It̄ ← {∅}, Iv ← {∅}
2 foreach ak ∈ A do
3 retrieve a set Ik of valid rider-and-driver dispatching

pairs from Rk and Dk

4 Iv ← Iv ∪ Ik
5 estimate the arrival rate λ(k) of rejoined drivers and

arrival rate μ(k) of riders in region ak in [t̄, t̄+ tc]

6 sort dispatching pairs in Iv based on their idle ratio

7 while Iv is not empty do
8 select the rider-and-driver pair 〈ri, dj〉 having the

smallest idle ratio from Iv
9 add 〈ri, dj〉 to It̄

10 update λ(k) of the destination region ak of ri
11 remove 〈ri, .〉 and 〈., dj〉 from Iv

12 return It̄

the platform. Then, we propose an idle ratio oriented greedy

approach as shown in Algorithm 1, which greedily select the

rider-and-driver dispatching pair having the smallest current

idle ratio value.

Complexity Analysis. Let the number of total waiting riders

be m, the number of total available drivers be n and the

number of total regions be x. Assume riders and drivers

be evenly distributed in x regions and x is much smaller

than m and n. In lines 3-6 of Algorithm 1, retrieving all

the valid rider-and-driver pairs needs O(mn
x). To sort the

valid pairs in Iv needs O(mn
x log2(

mn
x)) (line 7). In each

iteration of the while-loop (lines 8 - 12 of Algorithm 1),

selecting the pair having the smallest idle ratio from sorted

Iv needs O(1) (lines 9-10); updating μ(k) and the idle ratio

of average mn
x2 related pairs needs O(mn

x2) (line 11); remov-

ing the related valid pairs 〈ri, .〉 and 〈., dj〉 from Iv needs

O(max(nx ,
m
x)) (line 12). Since in each iteration, at least one

rider and one driver will be matched, thus there will be at

most min(m,n) iterations. Then the complexity of the while-

loop is O(min(m,n)mn
x2). Thus, the complexity of Algorithm 1

is O(max(mn
x log2(

mn
x), min(m,n)mn

x2)).

IV. EXPERIMENTAL STUDY

Data Sets. New York Taxi and Limousine Commission (TLC)

Taxi Trip Data [2] is a data set recording the information of

taxi trips in New York, USA. We use the taxi trip records

of yellow and green taxis in our experiments. Each trip

record includes the taxi’s pick-up and drop-off taxi-zones and

timestamps, the number of passengers and the total travel cost.

In the data set, there are 262 taxi zones from zone 2 to zone

263. In our experiments, we use taxi trip data records from

January 2018 to June 2018.

Experimental Configurations. We use the pickup location

and timestamp of a taxi trip record to initialize the source

location si and the posting timestamp ti of a ride order ri.
Then the dropoff location of the taxi trip record is used to set

1624

1K 2K 5K 8K 10K
n

0

1

2

3

4

T
ot

al
 R

ev
en

ue

×108

(a) Total Revenue

1K 2K 5K 8K 10K
n

0.8

0.9

1

1.1

1.2

B
at

ch
 R

un
ni

ng
 T

im
e

(s
)

(b) Batch Running Time

Fig. 2. Effects of Number of Drivers n.

the destination ei of the ride order. For the pickup deadline

τi of rider ri, we configure it by adding a random noise τ ′ ∈
[1, 10] and a base pickup waiting time of 120 seconds to the

posting timestamp ti (e.g., τi = ti+τ
′+120). To initialize the

origin location lj(0) of driver dj at the beginning timestamp

0, we first randomly generate zone ak for the driver following

the distribution of the number of orders over the whole 262

zones. Then uniformly generate the location lj(0) in zone ak.

In our experiment, we run the batch process every 10

seconds. To estimate the arrival rate of new riders and rejoined

drivers, we look up a time window of length tc of 5 minutes

with the “current” timestamp t̄ as the beginning point.

Approaches and Measurements We evaluate the effective-

ness and efficiency of our queueing-theoretic vehicle dispatch-

ing framework with a batch processing vehicle dispatching

algorithm, namely idle ratio oriented greedy (IRG), in terms

of the total revenue and the average batch running time.

Specifically, for IRG we can further have two different com-

binations: IRG-P and IRG-R, which use the predicted taxi

demand and the real taxi demand, respectively. In addition, we

compare our framework with two baseline methods, namely

long trip greedy (LTG) which greedily assigns orders with

the highest revenue to available taxis, and random (RAND)

which randomly assigns orders to available taxis. We report

the average total revenue and the average batch processing

time of our tested approaches for a whole day (from 00:00:00

to 23:59:59). All our experiments were run on an Intel Xeon

X5675 CPU @3.07 GHZ with 32 GB RAM in Java. The code

of our queueing-theoretic vehicle dispatching framework and

prediction methods can be accessed in our GitHub project [3].

Effect of the Number, n, of Drivers. Figure 2 illustrates the

experimental results on varying the number of drivers from 1K

to 10K. In Figure 2(a), when the number of drivers increases

from 1K to 10K, all the tested approaches can achieve results

with increasing total revenue. The reason is that when more

drivers are available, more riders can be served before their

pickup deadlines. When the number of drivers is 1K, our

IRG and LS approaches can achieve higher total revenue

than RAND and LTG. The difference between the results of

our IRG and LS are small. We will discuss the details in

later and clearer results figures. When the number of drivers

increases, the advantage of our IRG and LS in terms of the

total revenue become narrow. We also notice that when the

number of drivers reaches 10K, all the tested approaches can

achieve results with total revenue close to the upper bound.

The reason is that when there are 10K drivers, almost all

the riders can be served as long as he/she joins the platform.

The vehicle dispatching algorithms have no difference in term

of the total revenue, when drivers are sufficient. To clearly

show the differences between the total revenues of our tested

approaches, we will not plot out the results of UPPER as they

are always same with the results in Figure 2(a).
In Figure 2(b), when the number of drivers increases, the

batch running time of all the tested approaches also increases,

which is because in each batch there are more drivers to

process requiring more time to process. We can see that all

the tested approaches can finish each batch processing within

2 seconds, which is unnoticeable to the users.
In summary, IRG, in terms of the total revenue, can beat

RAND and LTG. Real taxi demand can result in the higher

total revenue. Thus, taxi demand prediction models with higher

accuracy are more valuable for the platform. Our framework is

efficient. In all the experiments, the running time of each batch

for all the tested approaches is less than 2 seconds, which is

affordable for the platform.

V. ACKNOWLEDGMENT

The work is partially supported by the Hong Kong RGC

GRF Project 16207617, the National Science Foundation of

China (NSFC) under Grant No. 61729201, Science and Tech-

nology Planning Project of Guangdong Province, China, No.

2015B010110006, Hong Kong ITC ITF grants ITS/391/15FX

and ITS/212/16FP, Didi-HKUST joint research lab project,

Microsoft Research Asia Collaborative Research Grant and

Wechat Research Grant. Peng Cheng is the corresponding

author.

REFERENCES

[1] [online] DiDi Chuxing. https://www.didichuxing.com.
[2] [online] NYC Taxi & Limousine Commission Dataset. http://www.nyc.

gov/html/tlc/html/about/trip record data.shtml.
[3] [online] Source Code. https://github.com/haidaoxiaofei/

queueing-car-hailing.
[4] [online] Uber. https://www.uber.com.
[5] S. Banerjee, R. Johari, and C. Riquelme. Dynamic pricing in ridesharing

platforms. ACM SIGecom Exchanges, 2016.
[6] P. Cheng, H. Xin, and L. Chen. Utility-aware ridesharing on road

networks. In ACM SIGMOD, 2017.
[7] J. Chu, K. Qian, et al. Passenger demand prediction with cellular

footprints. In IEEE SECON, 2018.
[8] N. Cressie and C. K. Wikle. Statistics for spatio-temporal data. John

Wiley & Sons, 2015.
[9] Y. Li, Y. Zheng, H. Zhang, and L. Chen. Traffic prediction in a bike-

sharing system. In ACM SIGSPATIAL, 2015.
[10] K. T. Seow, N. H. Dang, and D.-H. Lee. A collaborative multiagent

taxi-dispatch system. IEEE T-ASE, 2010.
[11] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris. Fundamentals

of queueing theory, volume 399. John Wiley & Sons, 2018.
[12] Y. Tong, J. She, et al. Online minimum matching in real-time spatial

data: experiments and analysis. PVLDB, 2016.
[13] V. V. Vazirani. Approximation algorithms. Springer Science & Business

Media, 2013.
[14] J. Zhang, Y. Zheng, et al. Dnn-based prediction model for spatio-

temporal data. In ACM SIGSPATIAL, 2016.
[15] J. Zhang, Y. Zheng, and D. Qi. Deep spatio-temporal residual networks

for citywide crowd flows prediction. AAAI, 2017.
[16] L. Zheng, P. Cheng, and L. Chen. Auction-based order dispatch and

pricing in ridesharing. In IEEE ICDE, 2019.

1625

